Side channel protection method based on generative adversarial network

The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU HONGGANG, GU RUIZHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU HONGGANG
GU RUIZHE
description The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113407936A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113407936A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113407936A3</originalsourceid><addsrcrecordid>eNrjZHALzkxJVUjOSMzLS81RKCjKL0lNLsnMz1PITS3JyE9RSEosTk1RAPLTU_NSixJLMstSFRJTylKLihOLMhNzFPJSS8rzi7J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlB7Sbyzn6GhsYmBuaWxmaMxMWoAUPEz9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Side channel protection method based on generative adversarial network</title><source>esp@cenet</source><creator>HU HONGGANG ; GU RUIZHE</creator><creatorcontrib>HU HONGGANG ; GU RUIZHE</creatorcontrib><description>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210917&amp;DB=EPODOC&amp;CC=CN&amp;NR=113407936A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210917&amp;DB=EPODOC&amp;CC=CN&amp;NR=113407936A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU HONGGANG</creatorcontrib><creatorcontrib>GU RUIZHE</creatorcontrib><title>Side channel protection method based on generative adversarial network</title><description>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALzkxJVUjOSMzLS81RKCjKL0lNLsnMz1PITS3JyE9RSEosTk1RAPLTU_NSixJLMstSFRJTylKLihOLMhNzFPJSS8rzi7J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlB7Sbyzn6GhsYmBuaWxmaMxMWoAUPEz9Q</recordid><startdate>20210917</startdate><enddate>20210917</enddate><creator>HU HONGGANG</creator><creator>GU RUIZHE</creator><scope>EVB</scope></search><sort><creationdate>20210917</creationdate><title>Side channel protection method based on generative adversarial network</title><author>HU HONGGANG ; GU RUIZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113407936A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU HONGGANG</creatorcontrib><creatorcontrib>GU RUIZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU HONGGANG</au><au>GU RUIZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Side channel protection method based on generative adversarial network</title><date>2021-09-17</date><risdate>2021</risdate><abstract>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113407936A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Side channel protection method based on generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20HONGGANG&rft.date=2021-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113407936A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true