Side channel protection method based on generative adversarial network
The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HU HONGGANG GU RUIZHE |
description | The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113407936A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113407936A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113407936A3</originalsourceid><addsrcrecordid>eNrjZHALzkxJVUjOSMzLS81RKCjKL0lNLsnMz1PITS3JyE9RSEosTk1RAPLTU_NSixJLMstSFRJTylKLihOLMhNzFPJSS8rzi7J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlB7Sbyzn6GhsYmBuaWxmaMxMWoAUPEz9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Side channel protection method based on generative adversarial network</title><source>esp@cenet</source><creator>HU HONGGANG ; GU RUIZHE</creator><creatorcontrib>HU HONGGANG ; GU RUIZHE</creatorcontrib><description>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210917&DB=EPODOC&CC=CN&NR=113407936A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210917&DB=EPODOC&CC=CN&NR=113407936A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU HONGGANG</creatorcontrib><creatorcontrib>GU RUIZHE</creatorcontrib><title>Side channel protection method based on generative adversarial network</title><description>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHALzkxJVUjOSMzLS81RKCjKL0lNLsnMz1PITS3JyE9RSEosTk1RAPLTU_NSixJLMstSFRJTylKLihOLMhNzFPJSS8rzi7J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFiMlB7Sbyzn6GhsYmBuaWxmaMxMWoAUPEz9Q</recordid><startdate>20210917</startdate><enddate>20210917</enddate><creator>HU HONGGANG</creator><creator>GU RUIZHE</creator><scope>EVB</scope></search><sort><creationdate>20210917</creationdate><title>Side channel protection method based on generative adversarial network</title><author>HU HONGGANG ; GU RUIZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113407936A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU HONGGANG</creatorcontrib><creatorcontrib>GU RUIZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU HONGGANG</au><au>GU RUIZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Side channel protection method based on generative adversarial network</title><date>2021-09-17</date><risdate>2021</risdate><abstract>The invention discloses a side channel protection method based on a generative adversarial network, and the method comprises the steps of obtaining a generative adversarial network through the training of an original side channel trajectory data set, generating a plurality of pieces of side channel trajectory data for given original side channel trajectory data through the obtained generative adversarial network, and finding out the side channel trajectory data which has the smallest difference with the given original side channel trajectory data from the original side channel trajectory data to serve as generated trajectory data; according to the distribution of the generated trajectory data, inserting noise at a specified sampling point position, and taking the generated trajectory data after noise insertion as real data to be input into a deep learning classifier. The method has the advantages that 1) some existing side channel preprocessing technologies can be resisted; and 2) the cryptographic equipment</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113407936A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Side channel protection method based on generative adversarial network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20HONGGANG&rft.date=2021-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113407936A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |