Mutual inductor nameplate text area detection method based on deep learning

The invention discloses a mutual inductor nameplate text area detection method based on deep learning. According to the method, a first-stage model is used for detecting a text area on a nameplate of the transformer equipment by using an image pixel classification principle. The mutual inductor name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BAI YUXUAN, WEI SHIMIN, DONG MINGSHUAI, YU XIULI, WU SHU, YANG FENGHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BAI YUXUAN
WEI SHIMIN
DONG MINGSHUAI
YU XIULI
WU SHU
YANG FENGHAO
description The invention discloses a mutual inductor nameplate text area detection method based on deep learning. According to the method, a first-stage model is used for detecting a text area on a nameplate of the transformer equipment by using an image pixel classification principle. The mutual inductor nameplate image feature extraction and fusion method adopts a U-Net network multi-dimensional feature fusion method, and features of character areas with different sizes in an image can be accurately extracted through the method. Meanwhile, in order to improve the recognition performance of the long text in the transformer nameplate image, a Difference Binarization (DB) network is adopted to associate, map and classify the fused features in the text detection stage, so that the situation that the long text with semantic association is cut off during text detection is avoided. Therefore, through a mode of combining the U-Net network and the DB network, the detection capability of the model on small-region texts is impro
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113378838A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113378838A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113378838A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQRuFtLES9w3gAiyWFaWVZEUQr-2VMfjWQnYRkAh5fCw9g9fjgLbvzpWnjSEF8c5oKCc_IkRWkeCtxAZOHwmlIQjP0lTzducLT1x7IFMFFgjzX3eLBsWLz66rbHsfbcNohpwk1s4NAp-Ha98bsrTX2YP55PmzfNYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mutual inductor nameplate text area detection method based on deep learning</title><source>esp@cenet</source><creator>BAI YUXUAN ; WEI SHIMIN ; DONG MINGSHUAI ; YU XIULI ; WU SHU ; YANG FENGHAO</creator><creatorcontrib>BAI YUXUAN ; WEI SHIMIN ; DONG MINGSHUAI ; YU XIULI ; WU SHU ; YANG FENGHAO</creatorcontrib><description>The invention discloses a mutual inductor nameplate text area detection method based on deep learning. According to the method, a first-stage model is used for detecting a text area on a nameplate of the transformer equipment by using an image pixel classification principle. The mutual inductor nameplate image feature extraction and fusion method adopts a U-Net network multi-dimensional feature fusion method, and features of character areas with different sizes in an image can be accurately extracted through the method. Meanwhile, in order to improve the recognition performance of the long text in the transformer nameplate image, a Difference Binarization (DB) network is adopted to associate, map and classify the fused features in the text detection stage, so that the situation that the long text with semantic association is cut off during text detection is avoided. Therefore, through a mode of combining the U-Net network and the DB network, the detection capability of the model on small-region texts is impro</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210910&amp;DB=EPODOC&amp;CC=CN&amp;NR=113378838A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210910&amp;DB=EPODOC&amp;CC=CN&amp;NR=113378838A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BAI YUXUAN</creatorcontrib><creatorcontrib>WEI SHIMIN</creatorcontrib><creatorcontrib>DONG MINGSHUAI</creatorcontrib><creatorcontrib>YU XIULI</creatorcontrib><creatorcontrib>WU SHU</creatorcontrib><creatorcontrib>YANG FENGHAO</creatorcontrib><title>Mutual inductor nameplate text area detection method based on deep learning</title><description>The invention discloses a mutual inductor nameplate text area detection method based on deep learning. According to the method, a first-stage model is used for detecting a text area on a nameplate of the transformer equipment by using an image pixel classification principle. The mutual inductor nameplate image feature extraction and fusion method adopts a U-Net network multi-dimensional feature fusion method, and features of character areas with different sizes in an image can be accurately extracted through the method. Meanwhile, in order to improve the recognition performance of the long text in the transformer nameplate image, a Difference Binarization (DB) network is adopted to associate, map and classify the fused features in the text detection stage, so that the situation that the long text with semantic association is cut off during text detection is avoided. Therefore, through a mode of combining the U-Net network and the DB network, the detection capability of the model on small-region texts is impro</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQRuFtLES9w3gAiyWFaWVZEUQr-2VMfjWQnYRkAh5fCw9g9fjgLbvzpWnjSEF8c5oKCc_IkRWkeCtxAZOHwmlIQjP0lTzducLT1x7IFMFFgjzX3eLBsWLz66rbHsfbcNohpwk1s4NAp-Ha98bsrTX2YP55PmzfNYU</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>BAI YUXUAN</creator><creator>WEI SHIMIN</creator><creator>DONG MINGSHUAI</creator><creator>YU XIULI</creator><creator>WU SHU</creator><creator>YANG FENGHAO</creator><scope>EVB</scope></search><sort><creationdate>20210910</creationdate><title>Mutual inductor nameplate text area detection method based on deep learning</title><author>BAI YUXUAN ; WEI SHIMIN ; DONG MINGSHUAI ; YU XIULI ; WU SHU ; YANG FENGHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113378838A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>BAI YUXUAN</creatorcontrib><creatorcontrib>WEI SHIMIN</creatorcontrib><creatorcontrib>DONG MINGSHUAI</creatorcontrib><creatorcontrib>YU XIULI</creatorcontrib><creatorcontrib>WU SHU</creatorcontrib><creatorcontrib>YANG FENGHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BAI YUXUAN</au><au>WEI SHIMIN</au><au>DONG MINGSHUAI</au><au>YU XIULI</au><au>WU SHU</au><au>YANG FENGHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mutual inductor nameplate text area detection method based on deep learning</title><date>2021-09-10</date><risdate>2021</risdate><abstract>The invention discloses a mutual inductor nameplate text area detection method based on deep learning. According to the method, a first-stage model is used for detecting a text area on a nameplate of the transformer equipment by using an image pixel classification principle. The mutual inductor nameplate image feature extraction and fusion method adopts a U-Net network multi-dimensional feature fusion method, and features of character areas with different sizes in an image can be accurately extracted through the method. Meanwhile, in order to improve the recognition performance of the long text in the transformer nameplate image, a Difference Binarization (DB) network is adopted to associate, map and classify the fused features in the text detection stage, so that the situation that the long text with semantic association is cut off during text detection is avoided. Therefore, through a mode of combining the U-Net network and the DB network, the detection capability of the model on small-region texts is impro</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113378838A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Mutual inductor nameplate text area detection method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BAI%20YUXUAN&rft.date=2021-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113378838A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true