Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network

The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG FANZHOU, ZHANG YI, WANG CHENXING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG FANZHOU
ZHANG YI
WANG CHENXING
description The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113358061A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113358061A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113358061A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAURLtxIeodvgcIWIriVoriyo3uS2ymNpj-H5JfvL5ZeABXb2DeMMuK755fAZQ1-QjSMQHG-QmcvbANFMWzUh9kdjTB5jmhlFqyjuJIBgI7o2IKqLfBP5PVMiUHRAqwicsDMfQj6b2uFoMNGZsfV9X2cn60V4MoHXK0PYrZtbe6bpr9cXeoT80_zhcF0kMG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><source>esp@cenet</source><creator>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</creator><creatorcontrib>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</creatorcontrib><description>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASURING ; MEASURING ANGLES ; MEASURING AREAS ; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS ; MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210907&amp;DB=EPODOC&amp;CC=CN&amp;NR=113358061A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210907&amp;DB=EPODOC&amp;CC=CN&amp;NR=113358061A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG FANZHOU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>WANG CHENXING</creatorcontrib><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><description>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>MEASURING ANGLES</subject><subject>MEASURING AREAS</subject><subject>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</subject><subject>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAURLtxIeodvgcIWIriVoriyo3uS2ymNpj-H5JfvL5ZeABXb2DeMMuK755fAZQ1-QjSMQHG-QmcvbANFMWzUh9kdjTB5jmhlFqyjuJIBgI7o2IKqLfBP5PVMiUHRAqwicsDMfQj6b2uFoMNGZsfV9X2cn60V4MoHXK0PYrZtbe6bpr9cXeoT80_zhcF0kMG</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>WANG FANZHOU</creator><creator>ZHANG YI</creator><creator>WANG CHENXING</creator><scope>EVB</scope></search><sort><creationdate>20210907</creationdate><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><author>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113358061A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>MEASURING ANGLES</topic><topic>MEASURING AREAS</topic><topic>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</topic><topic>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG FANZHOU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>WANG CHENXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG FANZHOU</au><au>ZHANG YI</au><au>WANG CHENXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><date>2021-09-07</date><risdate>2021</risdate><abstract>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113358061A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MEASURING
MEASURING ANGLES
MEASURING AREAS
MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS
PHYSICS
TESTING
title Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20FANZHOU&rft.date=2021-09-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113358061A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true