Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network
The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG FANZHOU ZHANG YI WANG CHENXING |
description | The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113358061A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113358061A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113358061A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAURLtxIeodvgcIWIriVoriyo3uS2ymNpj-H5JfvL5ZeABXb2DeMMuK755fAZQ1-QjSMQHG-QmcvbANFMWzUh9kdjTB5jmhlFqyjuJIBgI7o2IKqLfBP5PVMiUHRAqwicsDMfQj6b2uFoMNGZsfV9X2cn60V4MoHXK0PYrZtbe6bpr9cXeoT80_zhcF0kMG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><source>esp@cenet</source><creator>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</creator><creatorcontrib>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</creatorcontrib><description>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MEASURING ; MEASURING ANGLES ; MEASURING AREAS ; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS ; MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210907&DB=EPODOC&CC=CN&NR=113358061A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210907&DB=EPODOC&CC=CN&NR=113358061A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG FANZHOU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>WANG CHENXING</creatorcontrib><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><description>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MEASURING</subject><subject>MEASURING ANGLES</subject><subject>MEASURING AREAS</subject><subject>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</subject><subject>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAURLtxIeodvgcIWIriVoriyo3uS2ymNpj-H5JfvL5ZeABXb2DeMMuK755fAZQ1-QjSMQHG-QmcvbANFMWzUh9kdjTB5jmhlFqyjuJIBgI7o2IKqLfBP5PVMiUHRAqwicsDMfQj6b2uFoMNGZsfV9X2cn60V4MoHXK0PYrZtbe6bpr9cXeoT80_zhcF0kMG</recordid><startdate>20210907</startdate><enddate>20210907</enddate><creator>WANG FANZHOU</creator><creator>ZHANG YI</creator><creator>WANG CHENXING</creator><scope>EVB</scope></search><sort><creationdate>20210907</creationdate><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><author>WANG FANZHOU ; ZHANG YI ; WANG CHENXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113358061A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MEASURING</topic><topic>MEASURING ANGLES</topic><topic>MEASURING AREAS</topic><topic>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</topic><topic>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG FANZHOU</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>WANG CHENXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG FANZHOU</au><au>ZHANG YI</au><au>WANG CHENXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network</title><date>2021-09-07</date><risdate>2021</risdate><abstract>The invention discloses a single fringe three-dimensional point cloud measurement method of an end-to-end calibration deep learning network, which can realize three-dimensional point cloud measurement of a single fringe pattern by using a deep learning technology only by using a checkerboard fringe pattern and a single object fringe pattern, and in order to solve the problems that the calibration process of a fringe projection measurement system is tedious and a data set is not universal under different calibration parameters when a deep learning technology is used, a checkerboard fringe pattern and a single fringe pattern are used for jointly training a deep learning network, the checkerboard fringe pattern can perform world coordinate calibration on the network, and through a calibrated deep learning network model, an object in the single fringe pattern is mapped to a world coordinate system corresponding to the checkerboard, so that the network directly outputs a three-dimensional point cloud of a real wor</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113358061A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MEASURING MEASURING ANGLES MEASURING AREAS MEASURING IRREGULARITIES OF SURFACES OR CONTOURS MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS PHYSICS TESTING |
title | Single stripe three-dimensional point cloud measurement method of end-to-end calibration deep learning network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20FANZHOU&rft.date=2021-09-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113358061A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |