Smart city resource recommendation method and system based on knowledge graph

The invention provides a smart city data resource recommendation method and system based on a knowledge graph. The system comprises a candidate resource recall module, a knowledge graph embedding module, a knowledge graph extraction module and a recommendation module based on a deep network model. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI CHAO, YANG PEIQIN, GUAN ZHELIN, SHI HUICHANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI CHAO
YANG PEIQIN
GUAN ZHELIN
SHI HUICHANG
description The invention provides a smart city data resource recommendation method and system based on a knowledge graph. The system comprises a candidate resource recall module, a knowledge graph embedding module, a knowledge graph extraction module and a recommendation module based on a deep network model. According to the recommendation system, a user portrait is enhanced by associating triples, the relation between a user and resources is mined by utilizing a meta-graph instance, and an attention mechanism is introduced on the basis of an MLP model to consider the contribution degree of different meta-graphs to a result, so that the recommendation result is more accurate and more interpretable. 本发明提出了一种基于知识图谱的智慧城市数据资源推荐方法和系统,所述系统包括候选资源召回模块、知识图谱嵌入模块、知识图谱提取模块和基于深度网络模型的推荐模块。本发明的推荐系统通过关联三元组增强用户画像,利用元图实例来挖掘用户和资源之间的联系,并在MLP模型基础上引入注意力机制以考虑不同元图对结果的贡献度,从而使推荐结果更精确更具可解释性。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113343100A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113343100A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113343100A3</originalsourceid><addsrcrecordid>eNqNij0KwkAQRtNYiHqH8QBClvUCEhQbbbQP4-5nEsz-sDMiub0pPIDVe_DesrrcAhclN-hEBZLexWEWl0JA9KxDihSgffLE0ZNMogj0YIGnOb1i-ozwHagrnPt1tXjyKNj8uKq2p-O9Oe-QUwvJ7BChbXM1xtq9NXV9sP88XwSDNlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Smart city resource recommendation method and system based on knowledge graph</title><source>esp@cenet</source><creator>LI CHAO ; YANG PEIQIN ; GUAN ZHELIN ; SHI HUICHANG</creator><creatorcontrib>LI CHAO ; YANG PEIQIN ; GUAN ZHELIN ; SHI HUICHANG</creatorcontrib><description>The invention provides a smart city data resource recommendation method and system based on a knowledge graph. The system comprises a candidate resource recall module, a knowledge graph embedding module, a knowledge graph extraction module and a recommendation module based on a deep network model. According to the recommendation system, a user portrait is enhanced by associating triples, the relation between a user and resources is mined by utilizing a meta-graph instance, and an attention mechanism is introduced on the basis of an MLP model to consider the contribution degree of different meta-graphs to a result, so that the recommendation result is more accurate and more interpretable. 本发明提出了一种基于知识图谱的智慧城市数据资源推荐方法和系统,所述系统包括候选资源召回模块、知识图谱嵌入模块、知识图谱提取模块和基于深度网络模型的推荐模块。本发明的推荐系统通过关联三元组增强用户画像,利用元图实例来挖掘用户和资源之间的联系,并在MLP模型基础上引入注意力机制以考虑不同元图对结果的贡献度,从而使推荐结果更精确更具可解释性。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210903&amp;DB=EPODOC&amp;CC=CN&amp;NR=113343100A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210903&amp;DB=EPODOC&amp;CC=CN&amp;NR=113343100A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHAO</creatorcontrib><creatorcontrib>YANG PEIQIN</creatorcontrib><creatorcontrib>GUAN ZHELIN</creatorcontrib><creatorcontrib>SHI HUICHANG</creatorcontrib><title>Smart city resource recommendation method and system based on knowledge graph</title><description>The invention provides a smart city data resource recommendation method and system based on a knowledge graph. The system comprises a candidate resource recall module, a knowledge graph embedding module, a knowledge graph extraction module and a recommendation module based on a deep network model. According to the recommendation system, a user portrait is enhanced by associating triples, the relation between a user and resources is mined by utilizing a meta-graph instance, and an attention mechanism is introduced on the basis of an MLP model to consider the contribution degree of different meta-graphs to a result, so that the recommendation result is more accurate and more interpretable. 本发明提出了一种基于知识图谱的智慧城市数据资源推荐方法和系统,所述系统包括候选资源召回模块、知识图谱嵌入模块、知识图谱提取模块和基于深度网络模型的推荐模块。本发明的推荐系统通过关联三元组增强用户画像,利用元图实例来挖掘用户和资源之间的联系,并在MLP模型基础上引入注意力机制以考虑不同元图对结果的贡献度,从而使推荐结果更精确更具可解释性。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNij0KwkAQRtNYiHqH8QBClvUCEhQbbbQP4-5nEsz-sDMiub0pPIDVe_DesrrcAhclN-hEBZLexWEWl0JA9KxDihSgffLE0ZNMogj0YIGnOb1i-ozwHagrnPt1tXjyKNj8uKq2p-O9Oe-QUwvJ7BChbXM1xtq9NXV9sP88XwSDNlg</recordid><startdate>20210903</startdate><enddate>20210903</enddate><creator>LI CHAO</creator><creator>YANG PEIQIN</creator><creator>GUAN ZHELIN</creator><creator>SHI HUICHANG</creator><scope>EVB</scope></search><sort><creationdate>20210903</creationdate><title>Smart city resource recommendation method and system based on knowledge graph</title><author>LI CHAO ; YANG PEIQIN ; GUAN ZHELIN ; SHI HUICHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113343100A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHAO</creatorcontrib><creatorcontrib>YANG PEIQIN</creatorcontrib><creatorcontrib>GUAN ZHELIN</creatorcontrib><creatorcontrib>SHI HUICHANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHAO</au><au>YANG PEIQIN</au><au>GUAN ZHELIN</au><au>SHI HUICHANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Smart city resource recommendation method and system based on knowledge graph</title><date>2021-09-03</date><risdate>2021</risdate><abstract>The invention provides a smart city data resource recommendation method and system based on a knowledge graph. The system comprises a candidate resource recall module, a knowledge graph embedding module, a knowledge graph extraction module and a recommendation module based on a deep network model. According to the recommendation system, a user portrait is enhanced by associating triples, the relation between a user and resources is mined by utilizing a meta-graph instance, and an attention mechanism is introduced on the basis of an MLP model to consider the contribution degree of different meta-graphs to a result, so that the recommendation result is more accurate and more interpretable. 本发明提出了一种基于知识图谱的智慧城市数据资源推荐方法和系统,所述系统包括候选资源召回模块、知识图谱嵌入模块、知识图谱提取模块和基于深度网络模型的推荐模块。本发明的推荐系统通过关联三元组增强用户画像,利用元图实例来挖掘用户和资源之间的联系,并在MLP模型基础上引入注意力机制以考虑不同元图对结果的贡献度,从而使推荐结果更精确更具可解释性。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113343100A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Smart city resource recommendation method and system based on knowledge graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHAO&rft.date=2021-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113343100A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true