External winding inspection unmanned aerial vehicle and method based on deep learning

The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YAO FENGGANG, SHI XIAOYING, WEI YANXI, WANG ZHI, LI LEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YAO FENGGANG
SHI XIAOYING
WEI YANXI
WANG ZHI
LI LEI
description The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113306741A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113306741A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113306741A3</originalsourceid><addsrcrecordid>eNqNzDsOwjAQhGE3FAi4w3IAJKwgqKMoiIoK6mixB2LJWVu2eRwfFxyAaor_08zVtf8UJGFPbyfWyYOc5AhTXBB6ysQisMRIrpIXRmc8iMXShDIGSzfOtVdrgUgenKSeLNXszj5j9duFWh_7S3faIIYBObKBoAzdWeum2e4PO902_5gv7h85IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><source>esp@cenet</source><creator>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</creator><creatorcontrib>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</creatorcontrib><description>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</description><language>chi ; eng</language><subject>AIRCRAFT ; AVIATION ; COSMONAUTICS ; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR ; GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT ; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR ; PERFORMING OPERATIONS ; TRANSPORTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210827&amp;DB=EPODOC&amp;CC=CN&amp;NR=113306741A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210827&amp;DB=EPODOC&amp;CC=CN&amp;NR=113306741A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAO FENGGANG</creatorcontrib><creatorcontrib>SHI XIAOYING</creatorcontrib><creatorcontrib>WEI YANXI</creatorcontrib><creatorcontrib>WANG ZHI</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><description>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</description><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>COSMONAUTICS</subject><subject>DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR</subject><subject>GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT</subject><subject>HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR</subject><subject>PERFORMING OPERATIONS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDsOwjAQhGE3FAi4w3IAJKwgqKMoiIoK6mixB2LJWVu2eRwfFxyAaor_08zVtf8UJGFPbyfWyYOc5AhTXBB6ysQisMRIrpIXRmc8iMXShDIGSzfOtVdrgUgenKSeLNXszj5j9duFWh_7S3faIIYBObKBoAzdWeum2e4PO902_5gv7h85IQ</recordid><startdate>20210827</startdate><enddate>20210827</enddate><creator>YAO FENGGANG</creator><creator>SHI XIAOYING</creator><creator>WEI YANXI</creator><creator>WANG ZHI</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20210827</creationdate><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><author>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113306741A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>COSMONAUTICS</topic><topic>DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR</topic><topic>GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT</topic><topic>HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR</topic><topic>PERFORMING OPERATIONS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YAO FENGGANG</creatorcontrib><creatorcontrib>SHI XIAOYING</creatorcontrib><creatorcontrib>WEI YANXI</creatorcontrib><creatorcontrib>WANG ZHI</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAO FENGGANG</au><au>SHI XIAOYING</au><au>WEI YANXI</au><au>WANG ZHI</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><date>2021-08-27</date><risdate>2021</risdate><abstract>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113306741A
source esp@cenet
subjects AIRCRAFT
AVIATION
COSMONAUTICS
DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR
GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT
HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR
PERFORMING OPERATIONS
TRANSPORTING
title External winding inspection unmanned aerial vehicle and method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAO%20FENGGANG&rft.date=2021-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113306741A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true