External winding inspection unmanned aerial vehicle and method based on deep learning
The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a pos...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YAO FENGGANG SHI XIAOYING WEI YANXI WANG ZHI LI LEI |
description | The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113306741A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113306741A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113306741A3</originalsourceid><addsrcrecordid>eNqNzDsOwjAQhGE3FAi4w3IAJKwgqKMoiIoK6mixB2LJWVu2eRwfFxyAaor_08zVtf8UJGFPbyfWyYOc5AhTXBB6ysQisMRIrpIXRmc8iMXShDIGSzfOtVdrgUgenKSeLNXszj5j9duFWh_7S3faIIYBObKBoAzdWeum2e4PO902_5gv7h85IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><source>esp@cenet</source><creator>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</creator><creatorcontrib>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</creatorcontrib><description>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</description><language>chi ; eng</language><subject>AIRCRAFT ; AVIATION ; COSMONAUTICS ; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR ; GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT ; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR ; PERFORMING OPERATIONS ; TRANSPORTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210827&DB=EPODOC&CC=CN&NR=113306741A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210827&DB=EPODOC&CC=CN&NR=113306741A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAO FENGGANG</creatorcontrib><creatorcontrib>SHI XIAOYING</creatorcontrib><creatorcontrib>WEI YANXI</creatorcontrib><creatorcontrib>WANG ZHI</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><description>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</description><subject>AIRCRAFT</subject><subject>AVIATION</subject><subject>COSMONAUTICS</subject><subject>DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR</subject><subject>GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT</subject><subject>HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR</subject><subject>PERFORMING OPERATIONS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDsOwjAQhGE3FAi4w3IAJKwgqKMoiIoK6mixB2LJWVu2eRwfFxyAaor_08zVtf8UJGFPbyfWyYOc5AhTXBB6ysQisMRIrpIXRmc8iMXShDIGSzfOtVdrgUgenKSeLNXszj5j9duFWh_7S3faIIYBObKBoAzdWeum2e4PO902_5gv7h85IQ</recordid><startdate>20210827</startdate><enddate>20210827</enddate><creator>YAO FENGGANG</creator><creator>SHI XIAOYING</creator><creator>WEI YANXI</creator><creator>WANG ZHI</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20210827</creationdate><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><author>YAO FENGGANG ; SHI XIAOYING ; WEI YANXI ; WANG ZHI ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113306741A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>AIRCRAFT</topic><topic>AVIATION</topic><topic>COSMONAUTICS</topic><topic>DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR</topic><topic>GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT</topic><topic>HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR</topic><topic>PERFORMING OPERATIONS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YAO FENGGANG</creatorcontrib><creatorcontrib>SHI XIAOYING</creatorcontrib><creatorcontrib>WEI YANXI</creatorcontrib><creatorcontrib>WANG ZHI</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAO FENGGANG</au><au>SHI XIAOYING</au><au>WEI YANXI</au><au>WANG ZHI</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>External winding inspection unmanned aerial vehicle and method based on deep learning</title><date>2021-08-27</date><risdate>2021</risdate><abstract>The invention provides an external winding inspection unmanned aerial vehicle and method based on deep learning. The external winding inspection unmanned aerial vehicle is composed of a rack 1, motors 2, rotors 3, a control box 4, a power supply 5, a data receiving and transmitting assembly 6, a positioning assembly 7, a circumferential camera assembly 8 and a vertical camera 9. The control box 4 comprises a flight control module, a GPU deep learning processing module and a storage module; the flight control module controls flight attitude, data transceiving, camera positioning, data calling and the like, the GPU deep learning processing module processes images and discriminates parts, needing to be maintained, of an airplane, and the storage module stores a trained deep learning target detection network model. According to the invention, winding inspection and damage judgment are automatically carried out in the whole process instead of manual work, the automation degree is high, time is saved, manual damage</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113306741A |
source | esp@cenet |
subjects | AIRCRAFT AVIATION COSMONAUTICS DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING ORREPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLYADAPTED FOR USE IN CONNECTION WITH AIRCRAFT HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFTCOMPONENTS, NOT OTHERWISE PROVIDED FOR PERFORMING OPERATIONS TRANSPORTING |
title | External winding inspection unmanned aerial vehicle and method based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAO%20FENGGANG&rft.date=2021-08-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113306741A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |