Unmanned aerial vehicle confrontation game training control method based on reinforcement learning

The invention discloses an unmanned aerial vehicle confrontation game training control method based on reinforcement learning. The method comprises the following steps that: a main agent is made to fight with all opponents in an opponent pool, and the winning rate of the main agent is calculated; wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUAN CONG, ZHOU ZHIHUA, PANG JINGCHENG, GUO TIANHAO, ZHAN DECHUAN, YU YANG, LUO FANMING, YUAN LEI, CHEN XIONGHUI, ZHANG YUNTIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUAN CONG
ZHOU ZHIHUA
PANG JINGCHENG
GUO TIANHAO
ZHAN DECHUAN
YU YANG
LUO FANMING
YUAN LEI
CHEN XIONGHUI
ZHANG YUNTIAN
description The invention discloses an unmanned aerial vehicle confrontation game training control method based on reinforcement learning. The method comprises the following steps that: a main agent is made to fight with all opponents in an opponent pool, and the winning rate of the main agent is calculated; whether the winning rate of the main agent meets a preset requirement or not is judged; if the winning rate of the main agent meets the preset requirement, an confronting opponent is selected according to the winning rate of the main agent; and the main agent and the confronting opponent are trained until the strategy of the main agent converges. The unmanned aerial vehicle confrontation game training control method based on the reinforcement learning is effective and can make the main agent have higher learning ability. 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113282100A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113282100A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113282100A3</originalsourceid><addsrcrecordid>eNqNyz0OgkAQxXEaC6PeYTyACR-NrSEYKyutybA8YJPdWTJMPL-QeACrV_x_b591b4ksgp4Y6jnQB5N3AeSSDJrE2HwSGjmCTNmLl3FrpilQhE2pp46X9b8qhZchqUOEGAWwbvyY7QYOC06_PWTne_OqHxfMqcUys4PA2vpZFFV5LYs8v1X_mC-scz6q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle confrontation game training control method based on reinforcement learning</title><source>esp@cenet</source><creator>GUAN CONG ; ZHOU ZHIHUA ; PANG JINGCHENG ; GUO TIANHAO ; ZHAN DECHUAN ; YU YANG ; LUO FANMING ; YUAN LEI ; CHEN XIONGHUI ; ZHANG YUNTIAN</creator><creatorcontrib>GUAN CONG ; ZHOU ZHIHUA ; PANG JINGCHENG ; GUO TIANHAO ; ZHAN DECHUAN ; YU YANG ; LUO FANMING ; YUAN LEI ; CHEN XIONGHUI ; ZHANG YUNTIAN</creatorcontrib><description>The invention discloses an unmanned aerial vehicle confrontation game training control method based on reinforcement learning. The method comprises the following steps that: a main agent is made to fight with all opponents in an opponent pool, and the winning rate of the main agent is calculated; whether the winning rate of the main agent meets a preset requirement or not is judged; if the winning rate of the main agent meets the preset requirement, an confronting opponent is selected according to the winning rate of the main agent; and the main agent and the confronting opponent are trained until the strategy of the main agent converges. The unmanned aerial vehicle confrontation game training control method based on the reinforcement learning is effective and can make the main agent have higher learning ability. 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210820&amp;DB=EPODOC&amp;CC=CN&amp;NR=113282100A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210820&amp;DB=EPODOC&amp;CC=CN&amp;NR=113282100A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>GUO TIANHAO</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><creatorcontrib>YUAN LEI</creatorcontrib><creatorcontrib>CHEN XIONGHUI</creatorcontrib><creatorcontrib>ZHANG YUNTIAN</creatorcontrib><title>Unmanned aerial vehicle confrontation game training control method based on reinforcement learning</title><description>The invention discloses an unmanned aerial vehicle confrontation game training control method based on reinforcement learning. The method comprises the following steps that: a main agent is made to fight with all opponents in an opponent pool, and the winning rate of the main agent is calculated; whether the winning rate of the main agent meets a preset requirement or not is judged; if the winning rate of the main agent meets the preset requirement, an confronting opponent is selected according to the winning rate of the main agent; and the main agent and the confronting opponent are trained until the strategy of the main agent converges. The unmanned aerial vehicle confrontation game training control method based on the reinforcement learning is effective and can make the main agent have higher learning ability. 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyz0OgkAQxXEaC6PeYTyACR-NrSEYKyutybA8YJPdWTJMPL-QeACrV_x_b591b4ksgp4Y6jnQB5N3AeSSDJrE2HwSGjmCTNmLl3FrpilQhE2pp46X9b8qhZchqUOEGAWwbvyY7QYOC06_PWTne_OqHxfMqcUys4PA2vpZFFV5LYs8v1X_mC-scz6q</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>GUAN CONG</creator><creator>ZHOU ZHIHUA</creator><creator>PANG JINGCHENG</creator><creator>GUO TIANHAO</creator><creator>ZHAN DECHUAN</creator><creator>YU YANG</creator><creator>LUO FANMING</creator><creator>YUAN LEI</creator><creator>CHEN XIONGHUI</creator><creator>ZHANG YUNTIAN</creator><scope>EVB</scope></search><sort><creationdate>20210820</creationdate><title>Unmanned aerial vehicle confrontation game training control method based on reinforcement learning</title><author>GUAN CONG ; ZHOU ZHIHUA ; PANG JINGCHENG ; GUO TIANHAO ; ZHAN DECHUAN ; YU YANG ; LUO FANMING ; YUAN LEI ; CHEN XIONGHUI ; ZHANG YUNTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113282100A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>GUO TIANHAO</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><creatorcontrib>YUAN LEI</creatorcontrib><creatorcontrib>CHEN XIONGHUI</creatorcontrib><creatorcontrib>ZHANG YUNTIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN CONG</au><au>ZHOU ZHIHUA</au><au>PANG JINGCHENG</au><au>GUO TIANHAO</au><au>ZHAN DECHUAN</au><au>YU YANG</au><au>LUO FANMING</au><au>YUAN LEI</au><au>CHEN XIONGHUI</au><au>ZHANG YUNTIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle confrontation game training control method based on reinforcement learning</title><date>2021-08-20</date><risdate>2021</risdate><abstract>The invention discloses an unmanned aerial vehicle confrontation game training control method based on reinforcement learning. The method comprises the following steps that: a main agent is made to fight with all opponents in an opponent pool, and the winning rate of the main agent is calculated; whether the winning rate of the main agent meets a preset requirement or not is judged; if the winning rate of the main agent meets the preset requirement, an confronting opponent is selected according to the winning rate of the main agent; and the main agent and the confronting opponent are trained until the strategy of the main agent converges. The unmanned aerial vehicle confrontation game training control method based on the reinforcement learning is effective and can make the main agent have higher learning ability. 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113282100A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING
COUNTING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Unmanned aerial vehicle confrontation game training control method based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20CONG&rft.date=2021-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113282100A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true