Course learning-based unmanned aerial vehicle air game confrontation solution method
The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GUAN CONG ZHOU ZHIHUA ZHOU JIAJUN QIN RONGJUN PANG JINGCHENG ZHAN DECHUAN YU YANG LUO FANMING |
description | The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113282061A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113282061A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113282061A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAwCQgtmFRrKzSh3HzJVnYzIT98fyKeACr9ynebdEZzSGCPDiIk6l8csRAWRYW-YARHHt6YXbWg9gFmngBWZUxqCROToWi-vzFgjTrsC82I_uIw6-74ni7duZeYtUecWULQerNo6qa-lKfzlXb_PO8AchaOTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><source>esp@cenet</source><creator>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</creator><creatorcontrib>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</creatorcontrib><description>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210820&DB=EPODOC&CC=CN&NR=113282061A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210820&DB=EPODOC&CC=CN&NR=113282061A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>ZHOU JIAJUN</creatorcontrib><creatorcontrib>QIN RONGJUN</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><description>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAwCQgtmFRrKzSh3HzJVnYzIT98fyKeACr9ynebdEZzSGCPDiIk6l8csRAWRYW-YARHHt6YXbWg9gFmngBWZUxqCROToWi-vzFgjTrsC82I_uIw6-74ni7duZeYtUecWULQerNo6qa-lKfzlXb_PO8AchaOTQ</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>GUAN CONG</creator><creator>ZHOU ZHIHUA</creator><creator>ZHOU JIAJUN</creator><creator>QIN RONGJUN</creator><creator>PANG JINGCHENG</creator><creator>ZHAN DECHUAN</creator><creator>YU YANG</creator><creator>LUO FANMING</creator><scope>EVB</scope></search><sort><creationdate>20210820</creationdate><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><author>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113282061A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>ZHOU JIAJUN</creatorcontrib><creatorcontrib>QIN RONGJUN</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN CONG</au><au>ZHOU ZHIHUA</au><au>ZHOU JIAJUN</au><au>QIN RONGJUN</au><au>PANG JINGCHENG</au><au>ZHAN DECHUAN</au><au>YU YANG</au><au>LUO FANMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><date>2021-08-20</date><risdate>2021</risdate><abstract>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113282061A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING ELECTRIC DIGITAL DATA PROCESSING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Course learning-based unmanned aerial vehicle air game confrontation solution method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20CONG&rft.date=2021-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113282061A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |