Course learning-based unmanned aerial vehicle air game confrontation solution method

The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUAN CONG, ZHOU ZHIHUA, ZHOU JIAJUN, QIN RONGJUN, PANG JINGCHENG, ZHAN DECHUAN, YU YANG, LUO FANMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUAN CONG
ZHOU ZHIHUA
ZHOU JIAJUN
QIN RONGJUN
PANG JINGCHENG
ZHAN DECHUAN
YU YANG
LUO FANMING
description The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113282061A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113282061A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113282061A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAwCQgtmFRrKzSh3HzJVnYzIT98fyKeACr9ynebdEZzSGCPDiIk6l8csRAWRYW-YARHHt6YXbWg9gFmngBWZUxqCROToWi-vzFgjTrsC82I_uIw6-74ni7duZeYtUecWULQerNo6qa-lKfzlXb_PO8AchaOTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><source>esp@cenet</source><creator>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</creator><creatorcontrib>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</creatorcontrib><description>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210820&amp;DB=EPODOC&amp;CC=CN&amp;NR=113282061A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210820&amp;DB=EPODOC&amp;CC=CN&amp;NR=113282061A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>ZHOU JIAJUN</creatorcontrib><creatorcontrib>QIN RONGJUN</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><description>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAwCQgtmFRrKzSh3HzJVnYzIT98fyKeACr9ynebdEZzSGCPDiIk6l8csRAWRYW-YARHHt6YXbWg9gFmngBWZUxqCROToWi-vzFgjTrsC82I_uIw6-74ni7duZeYtUecWULQerNo6qa-lKfzlXb_PO8AchaOTQ</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>GUAN CONG</creator><creator>ZHOU ZHIHUA</creator><creator>ZHOU JIAJUN</creator><creator>QIN RONGJUN</creator><creator>PANG JINGCHENG</creator><creator>ZHAN DECHUAN</creator><creator>YU YANG</creator><creator>LUO FANMING</creator><scope>EVB</scope></search><sort><creationdate>20210820</creationdate><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><author>GUAN CONG ; ZHOU ZHIHUA ; ZHOU JIAJUN ; QIN RONGJUN ; PANG JINGCHENG ; ZHAN DECHUAN ; YU YANG ; LUO FANMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113282061A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN CONG</creatorcontrib><creatorcontrib>ZHOU ZHIHUA</creatorcontrib><creatorcontrib>ZHOU JIAJUN</creatorcontrib><creatorcontrib>QIN RONGJUN</creatorcontrib><creatorcontrib>PANG JINGCHENG</creatorcontrib><creatorcontrib>ZHAN DECHUAN</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>LUO FANMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN CONG</au><au>ZHOU ZHIHUA</au><au>ZHOU JIAJUN</au><au>QIN RONGJUN</au><au>PANG JINGCHENG</au><au>ZHAN DECHUAN</au><au>YU YANG</au><au>LUO FANMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Course learning-based unmanned aerial vehicle air game confrontation solution method</title><date>2021-08-20</date><risdate>2021</risdate><abstract>The invention discloses a course learning-based unmanned aerial vehicle air game confrontation solution method. The method comprises the following steps of: (1) constructing an analogue simulation environment; (2) collecting real trajectory data of a pilot for controlling an aircraft, and performing course target classification on the trajectory data according to maneuvering motion difficulty; (3) for a trajectory under a specified course target, optimizing the similarity between a trajectory generated by a strategy model and an expert trajectory through imitation learning; (4) obtaining a pre-trained unmanned aerial vehicle strategy model; (5) based on the pre-trained unmanned aerial vehicle strategy model, creating unmanned aerial vehicle intelligent agents of a friend and a foe in a simulator; (6) making the unmanned aerial vehicles obtain observation at the current moment in the simulator; (7) making the unmanned aerial vehicles interact with a simulated environment, modeling the task of confrontation bet</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113282061A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Course learning-based unmanned aerial vehicle air game confrontation solution method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20CONG&rft.date=2021-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113282061A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true