Personalized recommendation method and system based on connection matrix

The invention belongs to the technical field of personalized recommendation, and particularly relates to a personalized recommendation method and system based on a connection matrix, and the method comprises the steps: constructing a user relation network and a commodity relation network according t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU JINMAO, PENG SHUAIHENG, DU SHAOYONG, GONG DAOFU, TAO RONGHUA, LIU FENG, WANG YIWEI, LI ZHENYU, WANG YILONG, ZHANG LIXIAO, TAN LEI, LU HAOYU, LIU FENLIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU JINMAO
PENG SHUAIHENG
DU SHAOYONG
GONG DAOFU
TAO RONGHUA
LIU FENG
WANG YIWEI
LI ZHENYU
WANG YILONG
ZHANG LIXIAO
TAN LEI
LU HAOYU
LIU FENLIN
description The invention belongs to the technical field of personalized recommendation, and particularly relates to a personalized recommendation method and system based on a connection matrix, and the method comprises the steps: constructing a user relation network and a commodity relation network according to user social data, commodity category data and the decibel of user-to-commodity score data; obtaining a user feature representation vector and a commodity feature representation vector in the user relation network and the commodity relation network by using a network representation learning algorithm; constructing a score prediction model, taking a user feature representation vector and a commodity feature representation vector as model input, fitting the user feature representation vector and the commodity feature representation vector through a connection matrix, taking an inner product of the three as a prediction score output by the model, and training the model by a stochastic gradient descent algorithm; and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113239265A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113239265A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113239265A3</originalsourceid><addsrcrecordid>eNrjZPAISC0qzs9LzMmsSk1RKEpNzs_NTc1LSSzJzM9TyE0tychPUUjMS1EoriwuSc1VSEosBioDSiXn5-WlJkNUJZYUZVbwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ2MjY0sjM1NHY2LUAAD78jTu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Personalized recommendation method and system based on connection matrix</title><source>esp@cenet</source><creator>XU JINMAO ; PENG SHUAIHENG ; DU SHAOYONG ; GONG DAOFU ; TAO RONGHUA ; LIU FENG ; WANG YIWEI ; LI ZHENYU ; WANG YILONG ; ZHANG LIXIAO ; TAN LEI ; LU HAOYU ; LIU FENLIN</creator><creatorcontrib>XU JINMAO ; PENG SHUAIHENG ; DU SHAOYONG ; GONG DAOFU ; TAO RONGHUA ; LIU FENG ; WANG YIWEI ; LI ZHENYU ; WANG YILONG ; ZHANG LIXIAO ; TAN LEI ; LU HAOYU ; LIU FENLIN</creatorcontrib><description>The invention belongs to the technical field of personalized recommendation, and particularly relates to a personalized recommendation method and system based on a connection matrix, and the method comprises the steps: constructing a user relation network and a commodity relation network according to user social data, commodity category data and the decibel of user-to-commodity score data; obtaining a user feature representation vector and a commodity feature representation vector in the user relation network and the commodity relation network by using a network representation learning algorithm; constructing a score prediction model, taking a user feature representation vector and a commodity feature representation vector as model input, fitting the user feature representation vector and the commodity feature representation vector through a connection matrix, taking an inner product of the three as a prediction score output by the model, and training the model by a stochastic gradient descent algorithm; and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210810&amp;DB=EPODOC&amp;CC=CN&amp;NR=113239265A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210810&amp;DB=EPODOC&amp;CC=CN&amp;NR=113239265A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU JINMAO</creatorcontrib><creatorcontrib>PENG SHUAIHENG</creatorcontrib><creatorcontrib>DU SHAOYONG</creatorcontrib><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>TAO RONGHUA</creatorcontrib><creatorcontrib>LIU FENG</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>WANG YILONG</creatorcontrib><creatorcontrib>ZHANG LIXIAO</creatorcontrib><creatorcontrib>TAN LEI</creatorcontrib><creatorcontrib>LU HAOYU</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><title>Personalized recommendation method and system based on connection matrix</title><description>The invention belongs to the technical field of personalized recommendation, and particularly relates to a personalized recommendation method and system based on a connection matrix, and the method comprises the steps: constructing a user relation network and a commodity relation network according to user social data, commodity category data and the decibel of user-to-commodity score data; obtaining a user feature representation vector and a commodity feature representation vector in the user relation network and the commodity relation network by using a network representation learning algorithm; constructing a score prediction model, taking a user feature representation vector and a commodity feature representation vector as model input, fitting the user feature representation vector and the commodity feature representation vector through a connection matrix, taking an inner product of the three as a prediction score output by the model, and training the model by a stochastic gradient descent algorithm; and</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAISC0qzs9LzMmsSk1RKEpNzs_NTc1LSSzJzM9TyE0tychPUUjMS1EoriwuSc1VSEosBioDSiXn5-WlJkNUJZYUZVbwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQ2MjY0sjM1NHY2LUAAD78jTu</recordid><startdate>20210810</startdate><enddate>20210810</enddate><creator>XU JINMAO</creator><creator>PENG SHUAIHENG</creator><creator>DU SHAOYONG</creator><creator>GONG DAOFU</creator><creator>TAO RONGHUA</creator><creator>LIU FENG</creator><creator>WANG YIWEI</creator><creator>LI ZHENYU</creator><creator>WANG YILONG</creator><creator>ZHANG LIXIAO</creator><creator>TAN LEI</creator><creator>LU HAOYU</creator><creator>LIU FENLIN</creator><scope>EVB</scope></search><sort><creationdate>20210810</creationdate><title>Personalized recommendation method and system based on connection matrix</title><author>XU JINMAO ; PENG SHUAIHENG ; DU SHAOYONG ; GONG DAOFU ; TAO RONGHUA ; LIU FENG ; WANG YIWEI ; LI ZHENYU ; WANG YILONG ; ZHANG LIXIAO ; TAN LEI ; LU HAOYU ; LIU FENLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113239265A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XU JINMAO</creatorcontrib><creatorcontrib>PENG SHUAIHENG</creatorcontrib><creatorcontrib>DU SHAOYONG</creatorcontrib><creatorcontrib>GONG DAOFU</creatorcontrib><creatorcontrib>TAO RONGHUA</creatorcontrib><creatorcontrib>LIU FENG</creatorcontrib><creatorcontrib>WANG YIWEI</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>WANG YILONG</creatorcontrib><creatorcontrib>ZHANG LIXIAO</creatorcontrib><creatorcontrib>TAN LEI</creatorcontrib><creatorcontrib>LU HAOYU</creatorcontrib><creatorcontrib>LIU FENLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU JINMAO</au><au>PENG SHUAIHENG</au><au>DU SHAOYONG</au><au>GONG DAOFU</au><au>TAO RONGHUA</au><au>LIU FENG</au><au>WANG YIWEI</au><au>LI ZHENYU</au><au>WANG YILONG</au><au>ZHANG LIXIAO</au><au>TAN LEI</au><au>LU HAOYU</au><au>LIU FENLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Personalized recommendation method and system based on connection matrix</title><date>2021-08-10</date><risdate>2021</risdate><abstract>The invention belongs to the technical field of personalized recommendation, and particularly relates to a personalized recommendation method and system based on a connection matrix, and the method comprises the steps: constructing a user relation network and a commodity relation network according to user social data, commodity category data and the decibel of user-to-commodity score data; obtaining a user feature representation vector and a commodity feature representation vector in the user relation network and the commodity relation network by using a network representation learning algorithm; constructing a score prediction model, taking a user feature representation vector and a commodity feature representation vector as model input, fitting the user feature representation vector and the commodity feature representation vector through a connection matrix, taking an inner product of the three as a prediction score output by the model, and training the model by a stochastic gradient descent algorithm; and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113239265A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Personalized recommendation method and system based on connection matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20JINMAO&rft.date=2021-08-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113239265A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true