Gas consumption demand prediction method and system based on integrated mode decomposition

The invention discloses a gas demand prediction method and system based on integrated modal decomposition. The method comprises the following steps: collecting and processing data, analyzing a natural gas load change rule in the data to determine a data set selection range, normalizing the data, per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAO YINGPENG, FU CHUAN, ZHAO ZHONGDE, CHEN JINDIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAO YINGPENG
FU CHUAN
ZHAO ZHONGDE
CHEN JINDIAN
description The invention discloses a gas demand prediction method and system based on integrated modal decomposition. The method comprises the following steps: collecting and processing data, analyzing a natural gas load change rule in the data to determine a data set selection range, normalizing the data, performing integrated modal decomposition on a normalized data sequence to obtain an IMF component and a residual quantity, training an SVR model by using the IMF component and the residual quantity, training the SVR model by using an original sequence, and performing nested model training and model verification on a prediction result. Correspondingly, the system comprises a processing module, a decomposition module, a first training module, a second training module, a third training module and a prediction module. According to the method, the original sequence prediction result and the IMF component prediction sequence result are imported into the new SVR model for training, so that the accuracy of the prediction res
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113222234A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113222234A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113222234A3</originalsourceid><addsrcrecordid>eNqNizsOAjEMRLehQMAdzAEolnABtOJTUVHRrExsIBKOo7UpuD1ZxAGYZjRvZqbN5YAGUbO9pHjSDMSCmaAMTCl-ibA_lGCk9jZngSsaE9QqZef7gF6TKHE9R5WilsbjvJnc8Gm8-PmsWe535-644qI9W8HImb3vTm0b1lVhsw3_bD5jmDt7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gas consumption demand prediction method and system based on integrated mode decomposition</title><source>esp@cenet</source><creator>HAO YINGPENG ; FU CHUAN ; ZHAO ZHONGDE ; CHEN JINDIAN</creator><creatorcontrib>HAO YINGPENG ; FU CHUAN ; ZHAO ZHONGDE ; CHEN JINDIAN</creatorcontrib><description>The invention discloses a gas demand prediction method and system based on integrated modal decomposition. The method comprises the following steps: collecting and processing data, analyzing a natural gas load change rule in the data to determine a data set selection range, normalizing the data, performing integrated modal decomposition on a normalized data sequence to obtain an IMF component and a residual quantity, training an SVR model by using the IMF component and the residual quantity, training the SVR model by using an original sequence, and performing nested model training and model verification on a prediction result. Correspondingly, the system comprises a processing module, a decomposition module, a first training module, a second training module, a third training module and a prediction module. According to the method, the original sequence prediction result and the IMF component prediction sequence result are imported into the new SVR model for training, so that the accuracy of the prediction res</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210806&amp;DB=EPODOC&amp;CC=CN&amp;NR=113222234A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210806&amp;DB=EPODOC&amp;CC=CN&amp;NR=113222234A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAO YINGPENG</creatorcontrib><creatorcontrib>FU CHUAN</creatorcontrib><creatorcontrib>ZHAO ZHONGDE</creatorcontrib><creatorcontrib>CHEN JINDIAN</creatorcontrib><title>Gas consumption demand prediction method and system based on integrated mode decomposition</title><description>The invention discloses a gas demand prediction method and system based on integrated modal decomposition. The method comprises the following steps: collecting and processing data, analyzing a natural gas load change rule in the data to determine a data set selection range, normalizing the data, performing integrated modal decomposition on a normalized data sequence to obtain an IMF component and a residual quantity, training an SVR model by using the IMF component and the residual quantity, training the SVR model by using an original sequence, and performing nested model training and model verification on a prediction result. Correspondingly, the system comprises a processing module, a decomposition module, a first training module, a second training module, a third training module and a prediction module. According to the method, the original sequence prediction result and the IMF component prediction sequence result are imported into the new SVR model for training, so that the accuracy of the prediction res</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOAjEMRLehQMAdzAEolnABtOJTUVHRrExsIBKOo7UpuD1ZxAGYZjRvZqbN5YAGUbO9pHjSDMSCmaAMTCl-ibA_lGCk9jZngSsaE9QqZef7gF6TKHE9R5WilsbjvJnc8Gm8-PmsWe535-644qI9W8HImb3vTm0b1lVhsw3_bD5jmDt7</recordid><startdate>20210806</startdate><enddate>20210806</enddate><creator>HAO YINGPENG</creator><creator>FU CHUAN</creator><creator>ZHAO ZHONGDE</creator><creator>CHEN JINDIAN</creator><scope>EVB</scope></search><sort><creationdate>20210806</creationdate><title>Gas consumption demand prediction method and system based on integrated mode decomposition</title><author>HAO YINGPENG ; FU CHUAN ; ZHAO ZHONGDE ; CHEN JINDIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113222234A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HAO YINGPENG</creatorcontrib><creatorcontrib>FU CHUAN</creatorcontrib><creatorcontrib>ZHAO ZHONGDE</creatorcontrib><creatorcontrib>CHEN JINDIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAO YINGPENG</au><au>FU CHUAN</au><au>ZHAO ZHONGDE</au><au>CHEN JINDIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gas consumption demand prediction method and system based on integrated mode decomposition</title><date>2021-08-06</date><risdate>2021</risdate><abstract>The invention discloses a gas demand prediction method and system based on integrated modal decomposition. The method comprises the following steps: collecting and processing data, analyzing a natural gas load change rule in the data to determine a data set selection range, normalizing the data, performing integrated modal decomposition on a normalized data sequence to obtain an IMF component and a residual quantity, training an SVR model by using the IMF component and the residual quantity, training the SVR model by using an original sequence, and performing nested model training and model verification on a prediction result. Correspondingly, the system comprises a processing module, a decomposition module, a first training module, a second training module, a third training module and a prediction module. According to the method, the original sequence prediction result and the IMF component prediction sequence result are imported into the new SVR model for training, so that the accuracy of the prediction res</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113222234A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Gas consumption demand prediction method and system based on integrated mode decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAO%20YINGPENG&rft.date=2021-08-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113222234A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true