Upper limb movement direction neural decoding method and device
The invention discloses an upper limb movement direction neural decoding method and device based on Riemannian metric. The method comprises the following steps: extracting electroencephalogram signal feature information from a neural signal in an upper limb movement direction in a movement task proc...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIA SHENGCHAO BI LUZHENG FEI WEIJIE WANG JIARONG |
description | The invention discloses an upper limb movement direction neural decoding method and device based on Riemannian metric. The method comprises the following steps: extracting electroencephalogram signal feature information from a neural signal in an upper limb movement direction in a movement task process through Riemannian metric; and recognizing the movement direction of the upper limbs by using the electroencephalogram features based on Riemannian metrics. According to the method, the upper limb motion intention analysis model is established through the electroencephalogram signal characteristic information based on Riemannian metrics, so that the analysis model can obtain stable motion intention analysis performance in cognitive concentration and cognitive distraction states, which is very important for rehabilitation and assistance. Meanwhile, a new thought is provided for research on upper limb motion decoding, and a basis is provided for further research on man-machine collaborative interaction.
本发明公开了一种基 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113171111A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113171111A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113171111A3</originalsourceid><addsrcrecordid>eNrjZLAPLShILVLIycxNUsjNL0vNTc0rUUjJLEpNLsnMz1PISy0tSsxRSElNzk_JzEtXyE0tychPUUjMSwGKlWUmp_IwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDY0NzQyBwNCZGDQCUhzDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Upper limb movement direction neural decoding method and device</title><source>esp@cenet</source><creator>XIA SHENGCHAO ; BI LUZHENG ; FEI WEIJIE ; WANG JIARONG</creator><creatorcontrib>XIA SHENGCHAO ; BI LUZHENG ; FEI WEIJIE ; WANG JIARONG</creatorcontrib><description>The invention discloses an upper limb movement direction neural decoding method and device based on Riemannian metric. The method comprises the following steps: extracting electroencephalogram signal feature information from a neural signal in an upper limb movement direction in a movement task process through Riemannian metric; and recognizing the movement direction of the upper limbs by using the electroencephalogram features based on Riemannian metrics. According to the method, the upper limb motion intention analysis model is established through the electroencephalogram signal characteristic information based on Riemannian metrics, so that the analysis model can obtain stable motion intention analysis performance in cognitive concentration and cognitive distraction states, which is very important for rehabilitation and assistance. Meanwhile, a new thought is provided for research on upper limb motion decoding, and a basis is provided for further research on man-machine collaborative interaction.
本发明公开了一种基</description><language>chi ; eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210727&DB=EPODOC&CC=CN&NR=113171111A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210727&DB=EPODOC&CC=CN&NR=113171111A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIA SHENGCHAO</creatorcontrib><creatorcontrib>BI LUZHENG</creatorcontrib><creatorcontrib>FEI WEIJIE</creatorcontrib><creatorcontrib>WANG JIARONG</creatorcontrib><title>Upper limb movement direction neural decoding method and device</title><description>The invention discloses an upper limb movement direction neural decoding method and device based on Riemannian metric. The method comprises the following steps: extracting electroencephalogram signal feature information from a neural signal in an upper limb movement direction in a movement task process through Riemannian metric; and recognizing the movement direction of the upper limbs by using the electroencephalogram features based on Riemannian metrics. According to the method, the upper limb motion intention analysis model is established through the electroencephalogram signal characteristic information based on Riemannian metrics, so that the analysis model can obtain stable motion intention analysis performance in cognitive concentration and cognitive distraction states, which is very important for rehabilitation and assistance. Meanwhile, a new thought is provided for research on upper limb motion decoding, and a basis is provided for further research on man-machine collaborative interaction.
本发明公开了一种基</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAPLShILVLIycxNUsjNL0vNTc0rUUjJLEpNLsnMz1PISy0tSsxRSElNzk_JzEtXyE0tychPUUjMSwGKlWUmp_IwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDY0NzQyBwNCZGDQCUhzDM</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>XIA SHENGCHAO</creator><creator>BI LUZHENG</creator><creator>FEI WEIJIE</creator><creator>WANG JIARONG</creator><scope>EVB</scope></search><sort><creationdate>20210727</creationdate><title>Upper limb movement direction neural decoding method and device</title><author>XIA SHENGCHAO ; BI LUZHENG ; FEI WEIJIE ; WANG JIARONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113171111A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>XIA SHENGCHAO</creatorcontrib><creatorcontrib>BI LUZHENG</creatorcontrib><creatorcontrib>FEI WEIJIE</creatorcontrib><creatorcontrib>WANG JIARONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIA SHENGCHAO</au><au>BI LUZHENG</au><au>FEI WEIJIE</au><au>WANG JIARONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Upper limb movement direction neural decoding method and device</title><date>2021-07-27</date><risdate>2021</risdate><abstract>The invention discloses an upper limb movement direction neural decoding method and device based on Riemannian metric. The method comprises the following steps: extracting electroencephalogram signal feature information from a neural signal in an upper limb movement direction in a movement task process through Riemannian metric; and recognizing the movement direction of the upper limbs by using the electroencephalogram features based on Riemannian metrics. According to the method, the upper limb motion intention analysis model is established through the electroencephalogram signal characteristic information based on Riemannian metrics, so that the analysis model can obtain stable motion intention analysis performance in cognitive concentration and cognitive distraction states, which is very important for rehabilitation and assistance. Meanwhile, a new thought is provided for research on upper limb motion decoding, and a basis is provided for further research on man-machine collaborative interaction.
本发明公开了一种基</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113171111A |
source | esp@cenet |
subjects | DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE SURGERY |
title | Upper limb movement direction neural decoding method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIA%20SHENGCHAO&rft.date=2021-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113171111A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |