SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION
Systems and methods for active transfer learning in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a deep featurizer, wherein the method comprises training a master model and a set of one or more secondary models, wherein the master model...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FEINBERG EVAN NATHANIEL PANDE VIJAY SATYANAND |
description | Systems and methods for active transfer learning in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a deep featurizer, wherein the method comprises training a master model and a set of one or more secondary models, wherein the master model includes a set of one or more layers, freezing weights of the master model, generating a set of one or more outputs from the master model, and training a set of one or more orthogonal models on the generated set of outputs.
例示了根据本发明的实施例的用于主动迁移学习的系统和方法。一个实施例包括一种用于训练深度特征化器的方法,其中该方法包括:训练主模型和一组一个或多个辅助模型,其中主模型包括一个或多个层的集合;冻结主模型的权重;从主模型生成一组一个或多个输出;并且在生成的一组输出上训练所述一组一个或多个正交模型。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113168568A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113168568A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113168568A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w_kBHUKxdD2SiwnYiyRnRZdSSpxEC_X_cfEDnN7y1srnWxbqMiBb6Eh8tBlcTIBGQk8gCTk7SnAiTBz4CNcgHizRGRyhXFK4o4TIW7V6jM-l7H5u1N6RGF-V-T2UZR6n8iqfwbDWtW7aQ9Ni_c_5AhreLRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION</title><source>esp@cenet</source><creator>FEINBERG EVAN NATHANIEL ; PANDE VIJAY SATYANAND</creator><creatorcontrib>FEINBERG EVAN NATHANIEL ; PANDE VIJAY SATYANAND</creatorcontrib><description>Systems and methods for active transfer learning in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a deep featurizer, wherein the method comprises training a master model and a set of one or more secondary models, wherein the master model includes a set of one or more layers, freezing weights of the master model, generating a set of one or more outputs from the master model, and training a set of one or more orthogonal models on the generated set of outputs.
例示了根据本发明的实施例的用于主动迁移学习的系统和方法。一个实施例包括一种用于训练深度特征化器的方法,其中该方法包括:训练主模型和一组一个或多个辅助模型,其中主模型包括一个或多个层的集合;冻结主模型的权重;从主模型生成一组一个或多个输出;并且在生成的一组输出上训练所述一组一个或多个正交模型。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210723&DB=EPODOC&CC=CN&NR=113168568A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210723&DB=EPODOC&CC=CN&NR=113168568A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FEINBERG EVAN NATHANIEL</creatorcontrib><creatorcontrib>PANDE VIJAY SATYANAND</creatorcontrib><title>SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION</title><description>Systems and methods for active transfer learning in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a deep featurizer, wherein the method comprises training a master model and a set of one or more secondary models, wherein the master model includes a set of one or more layers, freezing weights of the master model, generating a set of one or more outputs from the master model, and training a set of one or more orthogonal models on the generated set of outputs.
例示了根据本发明的实施例的用于主动迁移学习的系统和方法。一个实施例包括一种用于训练深度特征化器的方法,其中该方法包括:训练主模型和一组一个或多个辅助模型,其中主模型包括一个或多个层的集合;冻结主模型的权重;从主模型生成一组一个或多个输出;并且在生成的一组输出上训练所述一组一个或多个正交模型。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w_kBHUKxdD2SiwnYiyRnRZdSSpxEC_X_cfEDnN7y1srnWxbqMiBb6Eh8tBlcTIBGQk8gCTk7SnAiTBz4CNcgHizRGRyhXFK4o4TIW7V6jM-l7H5u1N6RGF-V-T2UZR6n8iqfwbDWtW7aQ9Ni_c_5AhreLRM</recordid><startdate>20210723</startdate><enddate>20210723</enddate><creator>FEINBERG EVAN NATHANIEL</creator><creator>PANDE VIJAY SATYANAND</creator><scope>EVB</scope></search><sort><creationdate>20210723</creationdate><title>SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION</title><author>FEINBERG EVAN NATHANIEL ; PANDE VIJAY SATYANAND</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113168568A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>FEINBERG EVAN NATHANIEL</creatorcontrib><creatorcontrib>PANDE VIJAY SATYANAND</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FEINBERG EVAN NATHANIEL</au><au>PANDE VIJAY SATYANAND</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION</title><date>2021-07-23</date><risdate>2021</risdate><abstract>Systems and methods for active transfer learning in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a deep featurizer, wherein the method comprises training a master model and a set of one or more secondary models, wherein the master model includes a set of one or more layers, freezing weights of the master model, generating a set of one or more outputs from the master model, and training a set of one or more orthogonal models on the generated set of outputs.
例示了根据本发明的实施例的用于主动迁移学习的系统和方法。一个实施例包括一种用于训练深度特征化器的方法,其中该方法包括:训练主模型和一组一个或多个辅助模型,其中主模型包括一个或多个层的集合;冻结主模型的权重;从主模型生成一组一个或多个输出;并且在生成的一组输出上训练所述一组一个或多个正交模型。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113168568A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | SYSTEMS AND METHODS FOR ACTIVE TRANSFER LEARNING WITH DEEP FEATURIZATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FEINBERG%20EVAN%20NATHANIEL&rft.date=2021-07-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113168568A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |