Target tracking method based on particle filtering and depth distance metric learning

The invention discloses a target tracking method based on particle filtering and depth distance metric learning, and relates to the field of automatic driving target visual tracking. The method comprises the following steps: constructing a nonlinear depth metric learning model; training the nonlinea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG HONGYAN, ZHANG LIBIN, ZHOU HE, ZHANG DINGZHUO, XUE XIYANG, YUAN HAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG HONGYAN
ZHANG LIBIN
ZHOU HE
ZHANG DINGZHUO
XUE XIYANG
YUAN HAI
description The invention discloses a target tracking method based on particle filtering and depth distance metric learning, and relates to the field of automatic driving target visual tracking. The method comprises the following steps: constructing a nonlinear depth metric learning model; training the nonlinear deep metric learning model based on a given automatic driving target positive and negative sample set, and optimizing nonlinear deep learning model parameters based on a gradient descent method; constructing a target observation model based on particle filtering to obtain optimal estimation of an automatic driving target state; and updating the target template through an online tracking strategy combining short-time and long-time stable updating so as to realize effective tracking of the automatic driving target. The method is good in performance under the scenes of partial shielding, illumination variation and the like. Compared with a comparison algorithm, under most test scenes, the method is low in average ce
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113128605A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113128605A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113128605A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAQRuFuXIh6h_EAgrEo3UpRXLmq6zImf9tgnIRk7o8WPICrt_nesnp0nEcoaWb78jLSGzpFR08ucBSFEmf1NoAGHxR5JiyOHJJO5HxRFov5yt5SAGf5knW1GDgUbH5dVdvrpWtvO6TYoyS2EGjf3o2pzaE57Y_n-h_zAdfMOSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target tracking method based on particle filtering and depth distance metric learning</title><source>esp@cenet</source><creator>WANG HONGYAN ; ZHANG LIBIN ; ZHOU HE ; ZHANG DINGZHUO ; XUE XIYANG ; YUAN HAI</creator><creatorcontrib>WANG HONGYAN ; ZHANG LIBIN ; ZHOU HE ; ZHANG DINGZHUO ; XUE XIYANG ; YUAN HAI</creatorcontrib><description>The invention discloses a target tracking method based on particle filtering and depth distance metric learning, and relates to the field of automatic driving target visual tracking. The method comprises the following steps: constructing a nonlinear depth metric learning model; training the nonlinear deep metric learning model based on a given automatic driving target positive and negative sample set, and optimizing nonlinear deep learning model parameters based on a gradient descent method; constructing a target observation model based on particle filtering to obtain optimal estimation of an automatic driving target state; and updating the target template through an online tracking strategy combining short-time and long-time stable updating so as to realize effective tracking of the automatic driving target. The method is good in performance under the scenes of partial shielding, illumination variation and the like. Compared with a comparison algorithm, under most test scenes, the method is low in average ce</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210716&amp;DB=EPODOC&amp;CC=CN&amp;NR=113128605A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210716&amp;DB=EPODOC&amp;CC=CN&amp;NR=113128605A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG HONGYAN</creatorcontrib><creatorcontrib>ZHANG LIBIN</creatorcontrib><creatorcontrib>ZHOU HE</creatorcontrib><creatorcontrib>ZHANG DINGZHUO</creatorcontrib><creatorcontrib>XUE XIYANG</creatorcontrib><creatorcontrib>YUAN HAI</creatorcontrib><title>Target tracking method based on particle filtering and depth distance metric learning</title><description>The invention discloses a target tracking method based on particle filtering and depth distance metric learning, and relates to the field of automatic driving target visual tracking. The method comprises the following steps: constructing a nonlinear depth metric learning model; training the nonlinear deep metric learning model based on a given automatic driving target positive and negative sample set, and optimizing nonlinear deep learning model parameters based on a gradient descent method; constructing a target observation model based on particle filtering to obtain optimal estimation of an automatic driving target state; and updating the target template through an online tracking strategy combining short-time and long-time stable updating so as to realize effective tracking of the automatic driving target. The method is good in performance under the scenes of partial shielding, illumination variation and the like. Compared with a comparison algorithm, under most test scenes, the method is low in average ce</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQRuFuXIh6h_EAgrEo3UpRXLmq6zImf9tgnIRk7o8WPICrt_nesnp0nEcoaWb78jLSGzpFR08ucBSFEmf1NoAGHxR5JiyOHJJO5HxRFov5yt5SAGf5knW1GDgUbH5dVdvrpWtvO6TYoyS2EGjf3o2pzaE57Y_n-h_zAdfMOSg</recordid><startdate>20210716</startdate><enddate>20210716</enddate><creator>WANG HONGYAN</creator><creator>ZHANG LIBIN</creator><creator>ZHOU HE</creator><creator>ZHANG DINGZHUO</creator><creator>XUE XIYANG</creator><creator>YUAN HAI</creator><scope>EVB</scope></search><sort><creationdate>20210716</creationdate><title>Target tracking method based on particle filtering and depth distance metric learning</title><author>WANG HONGYAN ; ZHANG LIBIN ; ZHOU HE ; ZHANG DINGZHUO ; XUE XIYANG ; YUAN HAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113128605A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG HONGYAN</creatorcontrib><creatorcontrib>ZHANG LIBIN</creatorcontrib><creatorcontrib>ZHOU HE</creatorcontrib><creatorcontrib>ZHANG DINGZHUO</creatorcontrib><creatorcontrib>XUE XIYANG</creatorcontrib><creatorcontrib>YUAN HAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG HONGYAN</au><au>ZHANG LIBIN</au><au>ZHOU HE</au><au>ZHANG DINGZHUO</au><au>XUE XIYANG</au><au>YUAN HAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target tracking method based on particle filtering and depth distance metric learning</title><date>2021-07-16</date><risdate>2021</risdate><abstract>The invention discloses a target tracking method based on particle filtering and depth distance metric learning, and relates to the field of automatic driving target visual tracking. The method comprises the following steps: constructing a nonlinear depth metric learning model; training the nonlinear deep metric learning model based on a given automatic driving target positive and negative sample set, and optimizing nonlinear deep learning model parameters based on a gradient descent method; constructing a target observation model based on particle filtering to obtain optimal estimation of an automatic driving target state; and updating the target template through an online tracking strategy combining short-time and long-time stable updating so as to realize effective tracking of the automatic driving target. The method is good in performance under the scenes of partial shielding, illumination variation and the like. Compared with a comparison algorithm, under most test scenes, the method is low in average ce</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113128605A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Target tracking method based on particle filtering and depth distance metric learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20HONGYAN&rft.date=2021-07-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113128605A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true