Checkerboard check method based on deep learning semantic segmentation

The invention relates to a checkerboard inspection method based on deep learning semantic segmentation; the method is used for checkerboard inspection during calibration of any camera; a checkerboard image is firstly acquired to achieve the purpose of calibrating internal and external parameters of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG RUI, ZHU JINGXING, LAI JIE, YANG PAN, LUO XIANWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG RUI
ZHU JINGXING
LAI JIE
YANG PAN
LUO XIANWEI
description The invention relates to a checkerboard inspection method based on deep learning semantic segmentation; the method is used for checkerboard inspection during calibration of any camera; a checkerboard image is firstly acquired to achieve the purpose of calibrating internal and external parameters of the camera, and the image is acquired through a vehicle-mounted camera and checkerboard inspection is performed. Compared with a traditional image processing method, the invention is high in accuracy and small in error degree, can be combined with the advantages of traditional checkerboard detection, improves the adaptability to interference items in the environment, and also improves the adaptability to environment illumination. 本发明涉及一种基于深度学习语义分割的棋盘格检查方法,所述方法用于任何相机标定时检测棋盘格用,首先获取棋盘格图像,以达到标定相机的内外参的目的,通过车载摄像头以获取图像并进行棋盘格检查。相对于传统的图像处理方法,本申请请准度高、误差度小,可以结合传统棋盘格检测的优点,提升对环境中干扰项的适应能力,同时也提升了对环境光照的适应能力。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113112552A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113112552A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113112552A3</originalsourceid><addsrcrecordid>eNqNikEKwjAUBbNxIeodvgfoIi09gIQWV125L7_Jsw02PyHJ_VHBA7iaGZijGs0G-0JeImdH9hsUULfoaOECR1HIAYl2cBYvKxUElurtR9YAqVx9lLM6PHkvuPx4UtdxeJh7gxRnlMQWgjqbSetO67bv21v3z_MGIPIzfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Checkerboard check method based on deep learning semantic segmentation</title><source>esp@cenet</source><creator>WANG RUI ; ZHU JINGXING ; LAI JIE ; YANG PAN ; LUO XIANWEI</creator><creatorcontrib>WANG RUI ; ZHU JINGXING ; LAI JIE ; YANG PAN ; LUO XIANWEI</creatorcontrib><description>The invention relates to a checkerboard inspection method based on deep learning semantic segmentation; the method is used for checkerboard inspection during calibration of any camera; a checkerboard image is firstly acquired to achieve the purpose of calibrating internal and external parameters of the camera, and the image is acquired through a vehicle-mounted camera and checkerboard inspection is performed. Compared with a traditional image processing method, the invention is high in accuracy and small in error degree, can be combined with the advantages of traditional checkerboard detection, improves the adaptability to interference items in the environment, and also improves the adaptability to environment illumination. 本发明涉及一种基于深度学习语义分割的棋盘格检查方法,所述方法用于任何相机标定时检测棋盘格用,首先获取棋盘格图像,以达到标定相机的内外参的目的,通过车载摄像头以获取图像并进行棋盘格检查。相对于传统的图像处理方法,本申请请准度高、误差度小,可以结合传统棋盘格检测的优点,提升对环境中干扰项的适应能力,同时也提升了对环境光照的适应能力。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210713&amp;DB=EPODOC&amp;CC=CN&amp;NR=113112552A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210713&amp;DB=EPODOC&amp;CC=CN&amp;NR=113112552A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>ZHU JINGXING</creatorcontrib><creatorcontrib>LAI JIE</creatorcontrib><creatorcontrib>YANG PAN</creatorcontrib><creatorcontrib>LUO XIANWEI</creatorcontrib><title>Checkerboard check method based on deep learning semantic segmentation</title><description>The invention relates to a checkerboard inspection method based on deep learning semantic segmentation; the method is used for checkerboard inspection during calibration of any camera; a checkerboard image is firstly acquired to achieve the purpose of calibrating internal and external parameters of the camera, and the image is acquired through a vehicle-mounted camera and checkerboard inspection is performed. Compared with a traditional image processing method, the invention is high in accuracy and small in error degree, can be combined with the advantages of traditional checkerboard detection, improves the adaptability to interference items in the environment, and also improves the adaptability to environment illumination. 本发明涉及一种基于深度学习语义分割的棋盘格检查方法,所述方法用于任何相机标定时检测棋盘格用,首先获取棋盘格图像,以达到标定相机的内外参的目的,通过车载摄像头以获取图像并进行棋盘格检查。相对于传统的图像处理方法,本申请请准度高、误差度小,可以结合传统棋盘格检测的优点,提升对环境中干扰项的适应能力,同时也提升了对环境光照的适应能力。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAUBbNxIeodvgfoIi09gIQWV125L7_Jsw02PyHJ_VHBA7iaGZijGs0G-0JeImdH9hsUULfoaOECR1HIAYl2cBYvKxUElurtR9YAqVx9lLM6PHkvuPx4UtdxeJh7gxRnlMQWgjqbSetO67bv21v3z_MGIPIzfw</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>WANG RUI</creator><creator>ZHU JINGXING</creator><creator>LAI JIE</creator><creator>YANG PAN</creator><creator>LUO XIANWEI</creator><scope>EVB</scope></search><sort><creationdate>20210713</creationdate><title>Checkerboard check method based on deep learning semantic segmentation</title><author>WANG RUI ; ZHU JINGXING ; LAI JIE ; YANG PAN ; LUO XIANWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113112552A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG RUI</creatorcontrib><creatorcontrib>ZHU JINGXING</creatorcontrib><creatorcontrib>LAI JIE</creatorcontrib><creatorcontrib>YANG PAN</creatorcontrib><creatorcontrib>LUO XIANWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG RUI</au><au>ZHU JINGXING</au><au>LAI JIE</au><au>YANG PAN</au><au>LUO XIANWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Checkerboard check method based on deep learning semantic segmentation</title><date>2021-07-13</date><risdate>2021</risdate><abstract>The invention relates to a checkerboard inspection method based on deep learning semantic segmentation; the method is used for checkerboard inspection during calibration of any camera; a checkerboard image is firstly acquired to achieve the purpose of calibrating internal and external parameters of the camera, and the image is acquired through a vehicle-mounted camera and checkerboard inspection is performed. Compared with a traditional image processing method, the invention is high in accuracy and small in error degree, can be combined with the advantages of traditional checkerboard detection, improves the adaptability to interference items in the environment, and also improves the adaptability to environment illumination. 本发明涉及一种基于深度学习语义分割的棋盘格检查方法,所述方法用于任何相机标定时检测棋盘格用,首先获取棋盘格图像,以达到标定相机的内外参的目的,通过车载摄像头以获取图像并进行棋盘格检查。相对于传统的图像处理方法,本申请请准度高、误差度小,可以结合传统棋盘格检测的优点,提升对环境中干扰项的适应能力,同时也提升了对环境光照的适应能力。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113112552A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Checkerboard check method based on deep learning semantic segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20RUI&rft.date=2021-07-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113112552A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true