Audio style unification method based on generative adversarial network

The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG ZHIJUN, XIE HUILONG, OUYANG TONGJIE, HU TIANLIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG ZHIJUN
XIE HUILONG
OUYANG TONGJIE
HU TIANLIN
description The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113096675A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113096675A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113096675A3</originalsourceid><addsrcrecordid>eNrjZHBzLE3JzFcoLqnMSVUozctMy0xOLMnMz1PITS3JyE9RSEosTk1RAPLTU_NSi4BSZakKiSllqUXFiUWZiTkKeakl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDEZqL0k3tnP0NDYwNLMzNzU0ZgYNQBgLDQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Audio style unification method based on generative adversarial network</title><source>esp@cenet</source><creator>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</creator><creatorcontrib>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</creatorcontrib><description>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210709&amp;DB=EPODOC&amp;CC=CN&amp;NR=113096675A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210709&amp;DB=EPODOC&amp;CC=CN&amp;NR=113096675A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG ZHIJUN</creatorcontrib><creatorcontrib>XIE HUILONG</creatorcontrib><creatorcontrib>OUYANG TONGJIE</creatorcontrib><creatorcontrib>HU TIANLIN</creatorcontrib><title>Audio style unification method based on generative adversarial network</title><description>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzLE3JzFcoLqnMSVUozctMy0xOLMnMz1PITS3JyE9RSEosTk1RAPLTU_NSi4BSZakKiSllqUXFiUWZiTkKeakl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDEZqL0k3tnP0NDYwNLMzNzU0ZgYNQBgLDQU</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>YANG ZHIJUN</creator><creator>XIE HUILONG</creator><creator>OUYANG TONGJIE</creator><creator>HU TIANLIN</creator><scope>EVB</scope></search><sort><creationdate>20210709</creationdate><title>Audio style unification method based on generative adversarial network</title><author>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113096675A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG ZHIJUN</creatorcontrib><creatorcontrib>XIE HUILONG</creatorcontrib><creatorcontrib>OUYANG TONGJIE</creatorcontrib><creatorcontrib>HU TIANLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG ZHIJUN</au><au>XIE HUILONG</au><au>OUYANG TONGJIE</au><au>HU TIANLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Audio style unification method based on generative adversarial network</title><date>2021-07-09</date><risdate>2021</risdate><abstract>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113096675A
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Audio style unification method based on generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20ZHIJUN&rft.date=2021-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113096675A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true