Audio style unification method based on generative adversarial network
The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG ZHIJUN XIE HUILONG OUYANG TONGJIE HU TIANLIN |
description | The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113096675A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113096675A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113096675A3</originalsourceid><addsrcrecordid>eNrjZHBzLE3JzFcoLqnMSVUozctMy0xOLMnMz1PITS3JyE9RSEosTk1RAPLTU_NSi4BSZakKiSllqUXFiUWZiTkKeakl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDEZqL0k3tnP0NDYwNLMzNzU0ZgYNQBgLDQU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Audio style unification method based on generative adversarial network</title><source>esp@cenet</source><creator>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</creator><creatorcontrib>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</creatorcontrib><description>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210709&DB=EPODOC&CC=CN&NR=113096675A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210709&DB=EPODOC&CC=CN&NR=113096675A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG ZHIJUN</creatorcontrib><creatorcontrib>XIE HUILONG</creatorcontrib><creatorcontrib>OUYANG TONGJIE</creatorcontrib><creatorcontrib>HU TIANLIN</creatorcontrib><title>Audio style unification method based on generative adversarial network</title><description>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzLE3JzFcoLqnMSVUozctMy0xOLMnMz1PITS3JyE9RSEosTk1RAPLTU_NSi4BSZakKiSllqUXFiUWZiTkKeakl5flF2TwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDEZqL0k3tnP0NDYwNLMzNzU0ZgYNQBgLDQU</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>YANG ZHIJUN</creator><creator>XIE HUILONG</creator><creator>OUYANG TONGJIE</creator><creator>HU TIANLIN</creator><scope>EVB</scope></search><sort><creationdate>20210709</creationdate><title>Audio style unification method based on generative adversarial network</title><author>YANG ZHIJUN ; XIE HUILONG ; OUYANG TONGJIE ; HU TIANLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113096675A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG ZHIJUN</creatorcontrib><creatorcontrib>XIE HUILONG</creatorcontrib><creatorcontrib>OUYANG TONGJIE</creatorcontrib><creatorcontrib>HU TIANLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG ZHIJUN</au><au>XIE HUILONG</au><au>OUYANG TONGJIE</au><au>HU TIANLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Audio style unification method based on generative adversarial network</title><date>2021-07-09</date><risdate>2021</risdate><abstract>The invention discloses an audio style unification method based on a generative adversarial network. The method comprises the following steps: step 1, acquiring an initial data set and a noise data set; step 2, preprocessing the initial data set and the noise data set, generating a noise mixed audio and a style template audio, and determining a training data set and a test data set related to the noise mixed audio and the style template audio; step 3, building a generative network model, training a generator network G for unifying audio styles, inputting the noise mixed audio and the style template audio, and outputting an audio of a target style and a frequency spectrum of the target style; step 4, building a discrimination network model, and training a discriminator network D to measure the similarity between the frequency spectrum of the target style output by the generator and the frequency spectrum of the style template; and step 5, constructing a loss function model and training the generative adversari</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113096675A |
source | esp@cenet |
subjects | ACOUSTICS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Audio style unification method based on generative adversarial network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20ZHIJUN&rft.date=2021-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113096675A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |