Speed reducer fatigue acceleration test and residual life prediction method and storage processing system
The invention provides a speed reducer fatigue acceleration test and residual life prediction method and a storage processing system, and relates to the technical field of machine learning. The method comprises the following steps: fatigue performance parameters of a to-be-predicted speed reducer ar...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI NINI MIN XINHE ZHANG PENG CHEN XINGBIN DU GUANTING XIONG HUIJIE ZHU HAN CAO WEI XIAO SHUNREN |
description | The invention provides a speed reducer fatigue acceleration test and residual life prediction method and a storage processing system, and relates to the technical field of machine learning. The method comprises the following steps: fatigue performance parameters of a to-be-predicted speed reducer are obtained, the fatigue performance parameters comprise the average fault-free time and the stress cycle number, and the fatigue performance parameters are fatigue life characterization parameters in an ideal state; a performance degradation model of the speed reducer is constructed based on the fatigue performance parameters; a pre-constructed fatigue acceleration model and a pre-constructed performance degradation model are adopted, acceleration factors are screened, an acceleration test is carried out, the fatigue durability of the speed reducer in the current stage and a performance degradation test result are obtained, and the fatigue durability of the current stage comprises the remaining average fault-free t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113076648A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113076648A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113076648A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAUBNA0FqLe4XsAwRBRWwmKlY324bM7iQub3WX_T-HtTYIHsBqGebMs3DMBljLsYJCpZXXdAGJj4JHHFgMpRInDpMTZgT1514LSeHJmFj30He1sRGPmblqjgYgLHclHFP26WLTsBZtfrort7fqq7zuk2EASGwRoUz_KstqfjsfD-VL9Y76HSkFK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Speed reducer fatigue acceleration test and residual life prediction method and storage processing system</title><source>esp@cenet</source><creator>LI NINI ; MIN XINHE ; ZHANG PENG ; CHEN XINGBIN ; DU GUANTING ; XIONG HUIJIE ; ZHU HAN ; CAO WEI ; XIAO SHUNREN</creator><creatorcontrib>LI NINI ; MIN XINHE ; ZHANG PENG ; CHEN XINGBIN ; DU GUANTING ; XIONG HUIJIE ; ZHU HAN ; CAO WEI ; XIAO SHUNREN</creatorcontrib><description>The invention provides a speed reducer fatigue acceleration test and residual life prediction method and a storage processing system, and relates to the technical field of machine learning. The method comprises the following steps: fatigue performance parameters of a to-be-predicted speed reducer are obtained, the fatigue performance parameters comprise the average fault-free time and the stress cycle number, and the fatigue performance parameters are fatigue life characterization parameters in an ideal state; a performance degradation model of the speed reducer is constructed based on the fatigue performance parameters; a pre-constructed fatigue acceleration model and a pre-constructed performance degradation model are adopted, acceleration factors are screened, an acceleration test is carried out, the fatigue durability of the speed reducer in the current stage and a performance degradation test result are obtained, and the fatigue durability of the current stage comprises the remaining average fault-free t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210706&DB=EPODOC&CC=CN&NR=113076648A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210706&DB=EPODOC&CC=CN&NR=113076648A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI NINI</creatorcontrib><creatorcontrib>MIN XINHE</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>CHEN XINGBIN</creatorcontrib><creatorcontrib>DU GUANTING</creatorcontrib><creatorcontrib>XIONG HUIJIE</creatorcontrib><creatorcontrib>ZHU HAN</creatorcontrib><creatorcontrib>CAO WEI</creatorcontrib><creatorcontrib>XIAO SHUNREN</creatorcontrib><title>Speed reducer fatigue acceleration test and residual life prediction method and storage processing system</title><description>The invention provides a speed reducer fatigue acceleration test and residual life prediction method and a storage processing system, and relates to the technical field of machine learning. The method comprises the following steps: fatigue performance parameters of a to-be-predicted speed reducer are obtained, the fatigue performance parameters comprise the average fault-free time and the stress cycle number, and the fatigue performance parameters are fatigue life characterization parameters in an ideal state; a performance degradation model of the speed reducer is constructed based on the fatigue performance parameters; a pre-constructed fatigue acceleration model and a pre-constructed performance degradation model are adopted, acceleration factors are screened, an acceleration test is carried out, the fatigue durability of the speed reducer in the current stage and a performance degradation test result are obtained, and the fatigue durability of the current stage comprises the remaining average fault-free t</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAUBNA0FqLe4XsAwRBRWwmKlY324bM7iQub3WX_T-HtTYIHsBqGebMs3DMBljLsYJCpZXXdAGJj4JHHFgMpRInDpMTZgT1514LSeHJmFj30He1sRGPmblqjgYgLHclHFP26WLTsBZtfrort7fqq7zuk2EASGwRoUz_KstqfjsfD-VL9Y76HSkFK</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>LI NINI</creator><creator>MIN XINHE</creator><creator>ZHANG PENG</creator><creator>CHEN XINGBIN</creator><creator>DU GUANTING</creator><creator>XIONG HUIJIE</creator><creator>ZHU HAN</creator><creator>CAO WEI</creator><creator>XIAO SHUNREN</creator><scope>EVB</scope></search><sort><creationdate>20210706</creationdate><title>Speed reducer fatigue acceleration test and residual life prediction method and storage processing system</title><author>LI NINI ; MIN XINHE ; ZHANG PENG ; CHEN XINGBIN ; DU GUANTING ; XIONG HUIJIE ; ZHU HAN ; CAO WEI ; XIAO SHUNREN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113076648A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI NINI</creatorcontrib><creatorcontrib>MIN XINHE</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>CHEN XINGBIN</creatorcontrib><creatorcontrib>DU GUANTING</creatorcontrib><creatorcontrib>XIONG HUIJIE</creatorcontrib><creatorcontrib>ZHU HAN</creatorcontrib><creatorcontrib>CAO WEI</creatorcontrib><creatorcontrib>XIAO SHUNREN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI NINI</au><au>MIN XINHE</au><au>ZHANG PENG</au><au>CHEN XINGBIN</au><au>DU GUANTING</au><au>XIONG HUIJIE</au><au>ZHU HAN</au><au>CAO WEI</au><au>XIAO SHUNREN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Speed reducer fatigue acceleration test and residual life prediction method and storage processing system</title><date>2021-07-06</date><risdate>2021</risdate><abstract>The invention provides a speed reducer fatigue acceleration test and residual life prediction method and a storage processing system, and relates to the technical field of machine learning. The method comprises the following steps: fatigue performance parameters of a to-be-predicted speed reducer are obtained, the fatigue performance parameters comprise the average fault-free time and the stress cycle number, and the fatigue performance parameters are fatigue life characterization parameters in an ideal state; a performance degradation model of the speed reducer is constructed based on the fatigue performance parameters; a pre-constructed fatigue acceleration model and a pre-constructed performance degradation model are adopted, acceleration factors are screened, an acceleration test is carried out, the fatigue durability of the speed reducer in the current stage and a performance degradation test result are obtained, and the fatigue durability of the current stage comprises the remaining average fault-free t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113076648A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Speed reducer fatigue acceleration test and residual life prediction method and storage processing system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20NINI&rft.date=2021-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113076648A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |