Prophet-DCRNN traffic flow prediction method fusing multi-modal information

The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual ur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU YANG, SONG KAILEI, HOU WEIZHAO, CHEN XIAODONG, HAN ZHIZHUO, JIN YABIN, SU HUIJIE, ZHAN KETONG, ZHANG ZHITAO, ZANG YANJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU YANG
SONG KAILEI
HOU WEIZHAO
CHEN XIAODONG
HAN ZHIZHUO
JIN YABIN
SU HUIJIE
ZHAN KETONG
ZHANG ZHITAO
ZANG YANJUN
description The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual urban traffic is affected by factors such as weather, holidays and festivals, and meanwhile, traffic jam tends to occur in severe weather, holidays and festivals. The provides the Prophet-DCRNN traffic flow prediction method fusing multi-modal information to overcome the defects of the prior art. The method uses a Prophet time sequence prediction algorithm to capture holiday effects, uses a DCRNN to capture traffic space-time characteristics, and in addition, based on a stacking-like technology, the Prophet algorithm, the DCRNN algorithm, holiday characteristics and weather information are fused, a hybrid model that finally fuses multi-modal information is obtained, so the accuracy of traffic prediction in festivals
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113066288A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113066288A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113066288A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQAMBcPIj6h_UBAWuh9CpREYQg4r2EdLcNJNmQpPh9EXyAp7nMWtwfmdOMVZ7VU2uo2RA5C-T5DSnj6Gx1HCFgnXkEWoqLE4TFVycDj8aDi8Q5mO_aihUZX3D3cyP218tL3SQmHrAkYzFiHZRumvbQdce-P7X_nA9K9zV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prophet-DCRNN traffic flow prediction method fusing multi-modal information</title><source>esp@cenet</source><creator>XU YANG ; SONG KAILEI ; HOU WEIZHAO ; CHEN XIAODONG ; HAN ZHIZHUO ; JIN YABIN ; SU HUIJIE ; ZHAN KETONG ; ZHANG ZHITAO ; ZANG YANJUN</creator><creatorcontrib>XU YANG ; SONG KAILEI ; HOU WEIZHAO ; CHEN XIAODONG ; HAN ZHIZHUO ; JIN YABIN ; SU HUIJIE ; ZHAN KETONG ; ZHANG ZHITAO ; ZANG YANJUN</creatorcontrib><description>The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual urban traffic is affected by factors such as weather, holidays and festivals, and meanwhile, traffic jam tends to occur in severe weather, holidays and festivals. The provides the Prophet-DCRNN traffic flow prediction method fusing multi-modal information to overcome the defects of the prior art. The method uses a Prophet time sequence prediction algorithm to capture holiday effects, uses a DCRNN to capture traffic space-time characteristics, and in addition, based on a stacking-like technology, the Prophet algorithm, the DCRNN algorithm, holiday characteristics and weather information are fused, a hybrid model that finally fuses multi-modal information is obtained, so the accuracy of traffic prediction in festivals</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210702&amp;DB=EPODOC&amp;CC=CN&amp;NR=113066288A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210702&amp;DB=EPODOC&amp;CC=CN&amp;NR=113066288A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU YANG</creatorcontrib><creatorcontrib>SONG KAILEI</creatorcontrib><creatorcontrib>HOU WEIZHAO</creatorcontrib><creatorcontrib>CHEN XIAODONG</creatorcontrib><creatorcontrib>HAN ZHIZHUO</creatorcontrib><creatorcontrib>JIN YABIN</creatorcontrib><creatorcontrib>SU HUIJIE</creatorcontrib><creatorcontrib>ZHAN KETONG</creatorcontrib><creatorcontrib>ZHANG ZHITAO</creatorcontrib><creatorcontrib>ZANG YANJUN</creatorcontrib><title>Prophet-DCRNN traffic flow prediction method fusing multi-modal information</title><description>The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual urban traffic is affected by factors such as weather, holidays and festivals, and meanwhile, traffic jam tends to occur in severe weather, holidays and festivals. The provides the Prophet-DCRNN traffic flow prediction method fusing multi-modal information to overcome the defects of the prior art. The method uses a Prophet time sequence prediction algorithm to capture holiday effects, uses a DCRNN to capture traffic space-time characteristics, and in addition, based on a stacking-like technology, the Prophet algorithm, the DCRNN algorithm, holiday characteristics and weather information are fused, a hybrid model that finally fuses multi-modal information is obtained, so the accuracy of traffic prediction in festivals</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQAMBcPIj6h_UBAWuh9CpREYQg4r2EdLcNJNmQpPh9EXyAp7nMWtwfmdOMVZ7VU2uo2RA5C-T5DSnj6Gx1HCFgnXkEWoqLE4TFVycDj8aDi8Q5mO_aihUZX3D3cyP218tL3SQmHrAkYzFiHZRumvbQdce-P7X_nA9K9zV8</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>XU YANG</creator><creator>SONG KAILEI</creator><creator>HOU WEIZHAO</creator><creator>CHEN XIAODONG</creator><creator>HAN ZHIZHUO</creator><creator>JIN YABIN</creator><creator>SU HUIJIE</creator><creator>ZHAN KETONG</creator><creator>ZHANG ZHITAO</creator><creator>ZANG YANJUN</creator><scope>EVB</scope></search><sort><creationdate>20210702</creationdate><title>Prophet-DCRNN traffic flow prediction method fusing multi-modal information</title><author>XU YANG ; SONG KAILEI ; HOU WEIZHAO ; CHEN XIAODONG ; HAN ZHIZHUO ; JIN YABIN ; SU HUIJIE ; ZHAN KETONG ; ZHANG ZHITAO ; ZANG YANJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113066288A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU YANG</creatorcontrib><creatorcontrib>SONG KAILEI</creatorcontrib><creatorcontrib>HOU WEIZHAO</creatorcontrib><creatorcontrib>CHEN XIAODONG</creatorcontrib><creatorcontrib>HAN ZHIZHUO</creatorcontrib><creatorcontrib>JIN YABIN</creatorcontrib><creatorcontrib>SU HUIJIE</creatorcontrib><creatorcontrib>ZHAN KETONG</creatorcontrib><creatorcontrib>ZHANG ZHITAO</creatorcontrib><creatorcontrib>ZANG YANJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU YANG</au><au>SONG KAILEI</au><au>HOU WEIZHAO</au><au>CHEN XIAODONG</au><au>HAN ZHIZHUO</au><au>JIN YABIN</au><au>SU HUIJIE</au><au>ZHAN KETONG</au><au>ZHANG ZHITAO</au><au>ZANG YANJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prophet-DCRNN traffic flow prediction method fusing multi-modal information</title><date>2021-07-02</date><risdate>2021</risdate><abstract>The invention discloses a Prophet-DCRNN traffic flow prediction method fusing multi-modal information, and belongs to the technical field of traffic flow prediction. Although an existing flow prediction method based on deep learning well captures time-space characteristics of traffic flow, actual urban traffic is affected by factors such as weather, holidays and festivals, and meanwhile, traffic jam tends to occur in severe weather, holidays and festivals. The provides the Prophet-DCRNN traffic flow prediction method fusing multi-modal information to overcome the defects of the prior art. The method uses a Prophet time sequence prediction algorithm to capture holiday effects, uses a DCRNN to capture traffic space-time characteristics, and in addition, based on a stacking-like technology, the Prophet algorithm, the DCRNN algorithm, holiday characteristics and weather information are fused, a hybrid model that finally fuses multi-modal information is obtained, so the accuracy of traffic prediction in festivals</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113066288A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
title Prophet-DCRNN traffic flow prediction method fusing multi-modal information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20YANG&rft.date=2021-07-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113066288A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true