Real-time image semantic segmentation network based on attention guidance mechanism

The invention discloses a real-time image semantic segmentation network based on an attention guiding mechanism. The real-time image semantic segmentation network comprises a down-sampling unit, an up-sampling unit, an extreme efficient residual module, a self-adaptive attention module and a self-ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN ZHENHAN, LIU JIA, ZHOU QUAN, SHI HUIMIN, WANG LINJIE, QIANG YONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN ZHENHAN
LIU JIA
ZHOU QUAN
SHI HUIMIN
WANG LINJIE
QIANG YONG
description The invention discloses a real-time image semantic segmentation network based on an attention guiding mechanism. The real-time image semantic segmentation network comprises a down-sampling unit, an up-sampling unit, an extreme efficient residual module, a self-adaptive attention module and a self-adaptive fusion module. A feature extraction unit of the whole network structure is an extreme high-efficiency residual module, the calculation complexity of the module is effectively reduced by using an adaptive attention module (ASAM), and correlation information between effective pixel points can be captured; the low-level features and the high-level features are connected through an ASFM, and the features of different levels are connected in semantic segmentation; by stacking the five components, a real-time semantic segmentation network based on the attention mechanism is constructed, an encoder generates a down-sampled feature map, a decoder upsamples the deep feature map to match the resolution of an input ima
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113066089A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113066089A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113066089A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAURLNxIeodvgcotBSKLqUorlyo-_JNxzTYnxTzxesbwQO4mse8YebmcgaPhXoBeWEHShAO6m0GJwjK6mOgAH3H54NunNBTLlg1y69yL99zsCCBHTj4JEszu_OYsPrlwqwP-2t7LDDFDmlii_zXtaeqqsumKTfbXf3P5gOAHTjU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Real-time image semantic segmentation network based on attention guidance mechanism</title><source>esp@cenet</source><creator>SUN ZHENHAN ; LIU JIA ; ZHOU QUAN ; SHI HUIMIN ; WANG LINJIE ; QIANG YONG</creator><creatorcontrib>SUN ZHENHAN ; LIU JIA ; ZHOU QUAN ; SHI HUIMIN ; WANG LINJIE ; QIANG YONG</creatorcontrib><description>The invention discloses a real-time image semantic segmentation network based on an attention guiding mechanism. The real-time image semantic segmentation network comprises a down-sampling unit, an up-sampling unit, an extreme efficient residual module, a self-adaptive attention module and a self-adaptive fusion module. A feature extraction unit of the whole network structure is an extreme high-efficiency residual module, the calculation complexity of the module is effectively reduced by using an adaptive attention module (ASAM), and correlation information between effective pixel points can be captured; the low-level features and the high-level features are connected through an ASFM, and the features of different levels are connected in semantic segmentation; by stacking the five components, a real-time semantic segmentation network based on the attention mechanism is constructed, an encoder generates a down-sampled feature map, a decoder upsamples the deep feature map to match the resolution of an input ima</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210702&amp;DB=EPODOC&amp;CC=CN&amp;NR=113066089A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210702&amp;DB=EPODOC&amp;CC=CN&amp;NR=113066089A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN ZHENHAN</creatorcontrib><creatorcontrib>LIU JIA</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>SHI HUIMIN</creatorcontrib><creatorcontrib>WANG LINJIE</creatorcontrib><creatorcontrib>QIANG YONG</creatorcontrib><title>Real-time image semantic segmentation network based on attention guidance mechanism</title><description>The invention discloses a real-time image semantic segmentation network based on an attention guiding mechanism. The real-time image semantic segmentation network comprises a down-sampling unit, an up-sampling unit, an extreme efficient residual module, a self-adaptive attention module and a self-adaptive fusion module. A feature extraction unit of the whole network structure is an extreme high-efficiency residual module, the calculation complexity of the module is effectively reduced by using an adaptive attention module (ASAM), and correlation information between effective pixel points can be captured; the low-level features and the high-level features are connected through an ASFM, and the features of different levels are connected in semantic segmentation; by stacking the five components, a real-time semantic segmentation network based on the attention mechanism is constructed, an encoder generates a down-sampled feature map, a decoder upsamples the deep feature map to match the resolution of an input ima</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAURLNxIeodvgcotBSKLqUorlyo-_JNxzTYnxTzxesbwQO4mse8YebmcgaPhXoBeWEHShAO6m0GJwjK6mOgAH3H54NunNBTLlg1y69yL99zsCCBHTj4JEszu_OYsPrlwqwP-2t7LDDFDmlii_zXtaeqqsumKTfbXf3P5gOAHTjU</recordid><startdate>20210702</startdate><enddate>20210702</enddate><creator>SUN ZHENHAN</creator><creator>LIU JIA</creator><creator>ZHOU QUAN</creator><creator>SHI HUIMIN</creator><creator>WANG LINJIE</creator><creator>QIANG YONG</creator><scope>EVB</scope></search><sort><creationdate>20210702</creationdate><title>Real-time image semantic segmentation network based on attention guidance mechanism</title><author>SUN ZHENHAN ; LIU JIA ; ZHOU QUAN ; SHI HUIMIN ; WANG LINJIE ; QIANG YONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113066089A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN ZHENHAN</creatorcontrib><creatorcontrib>LIU JIA</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>SHI HUIMIN</creatorcontrib><creatorcontrib>WANG LINJIE</creatorcontrib><creatorcontrib>QIANG YONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN ZHENHAN</au><au>LIU JIA</au><au>ZHOU QUAN</au><au>SHI HUIMIN</au><au>WANG LINJIE</au><au>QIANG YONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Real-time image semantic segmentation network based on attention guidance mechanism</title><date>2021-07-02</date><risdate>2021</risdate><abstract>The invention discloses a real-time image semantic segmentation network based on an attention guiding mechanism. The real-time image semantic segmentation network comprises a down-sampling unit, an up-sampling unit, an extreme efficient residual module, a self-adaptive attention module and a self-adaptive fusion module. A feature extraction unit of the whole network structure is an extreme high-efficiency residual module, the calculation complexity of the module is effectively reduced by using an adaptive attention module (ASAM), and correlation information between effective pixel points can be captured; the low-level features and the high-level features are connected through an ASFM, and the features of different levels are connected in semantic segmentation; by stacking the five components, a real-time semantic segmentation network based on the attention mechanism is constructed, an encoder generates a down-sampled feature map, a decoder upsamples the deep feature map to match the resolution of an input ima</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113066089A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Real-time image semantic segmentation network based on attention guidance mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20ZHENHAN&rft.date=2021-07-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113066089A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true