LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance

The invention relates to an LS-SVM algorithm sounding training sample thinning method based on a sample Euclidean distance. The method comprises the following technical characteristics: selecting a sounding training sample used for constructing a seabed trend surface function; determining the sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG BO, WANG XU, HUANG XIANYUAN, LU XIUPING, WANG GENGFENG, XIONG XIONG, LI KAIFENG, HUANG MOTAO, XU GUANGXIU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG BO
WANG XU
HUANG XIANYUAN
LU XIUPING
WANG GENGFENG
XIONG XIONG
LI KAIFENG
HUANG MOTAO
XU GUANGXIU
description The invention relates to an LS-SVM algorithm sounding training sample thinning method based on a sample Euclidean distance. The method comprises the following technical characteristics: selecting a sounding training sample used for constructing a seabed trend surface function; determining the sample center of the sounding training sample, and calculating the Euclidean distance from the sounding training sample to the sample center one by one; adopting different Euclidean distances to carry out first-time and second-time thinning on the sounding training sample, comparing mean square errors of the first-time thinning and the second-time thinning to judge the precision index of the seabed trend surface function model, and determining the threshold value of the Euclidean distance on the premise that the precision of the seabed trend surface function model is ensured; and thinning a sounding training sample by using an Euclidean distance threshold, and adjusting combined parameters of an LS-SVM algorithm to const
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113033668A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113033668A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113033668A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQRbNxIeodxgMULIHiVkrFhbqpuBLK2EybQDIJnfT-ouje1X-P95fqcW6L9n4B9GOcXLYBJM5sHI-QJ3T8BsGQPEG2jj8eKNto4IlCBiL_ejP33hlCBuMkI_e0VosBvdDmuyu1PTa3-lRQih1Jwp6Ycldfy1LvtK6q_UH_83kBe0s7gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance</title><source>esp@cenet</source><creator>ZHANG BO ; WANG XU ; HUANG XIANYUAN ; LU XIUPING ; WANG GENGFENG ; XIONG XIONG ; LI KAIFENG ; HUANG MOTAO ; XU GUANGXIU</creator><creatorcontrib>ZHANG BO ; WANG XU ; HUANG XIANYUAN ; LU XIUPING ; WANG GENGFENG ; XIONG XIONG ; LI KAIFENG ; HUANG MOTAO ; XU GUANGXIU</creatorcontrib><description>The invention relates to an LS-SVM algorithm sounding training sample thinning method based on a sample Euclidean distance. The method comprises the following technical characteristics: selecting a sounding training sample used for constructing a seabed trend surface function; determining the sample center of the sounding training sample, and calculating the Euclidean distance from the sounding training sample to the sample center one by one; adopting different Euclidean distances to carry out first-time and second-time thinning on the sounding training sample, comparing mean square errors of the first-time thinning and the second-time thinning to judge the precision index of the seabed trend surface function model, and determining the threshold value of the Euclidean distance on the premise that the precision of the seabed trend surface function model is ensured; and thinning a sounding training sample by using an Euclidean distance threshold, and adjusting combined parameters of an LS-SVM algorithm to const</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210625&amp;DB=EPODOC&amp;CC=CN&amp;NR=113033668A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210625&amp;DB=EPODOC&amp;CC=CN&amp;NR=113033668A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG BO</creatorcontrib><creatorcontrib>WANG XU</creatorcontrib><creatorcontrib>HUANG XIANYUAN</creatorcontrib><creatorcontrib>LU XIUPING</creatorcontrib><creatorcontrib>WANG GENGFENG</creatorcontrib><creatorcontrib>XIONG XIONG</creatorcontrib><creatorcontrib>LI KAIFENG</creatorcontrib><creatorcontrib>HUANG MOTAO</creatorcontrib><creatorcontrib>XU GUANGXIU</creatorcontrib><title>LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance</title><description>The invention relates to an LS-SVM algorithm sounding training sample thinning method based on a sample Euclidean distance. The method comprises the following technical characteristics: selecting a sounding training sample used for constructing a seabed trend surface function; determining the sample center of the sounding training sample, and calculating the Euclidean distance from the sounding training sample to the sample center one by one; adopting different Euclidean distances to carry out first-time and second-time thinning on the sounding training sample, comparing mean square errors of the first-time thinning and the second-time thinning to judge the precision index of the seabed trend surface function model, and determining the threshold value of the Euclidean distance on the premise that the precision of the seabed trend surface function model is ensured; and thinning a sounding training sample by using an Euclidean distance threshold, and adjusting combined parameters of an LS-SVM algorithm to const</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQRbNxIeodxgMULIHiVkrFhbqpuBLK2EybQDIJnfT-ouje1X-P95fqcW6L9n4B9GOcXLYBJM5sHI-QJ3T8BsGQPEG2jj8eKNto4IlCBiL_ejP33hlCBuMkI_e0VosBvdDmuyu1PTa3-lRQih1Jwp6Ycldfy1LvtK6q_UH_83kBe0s7gg</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>ZHANG BO</creator><creator>WANG XU</creator><creator>HUANG XIANYUAN</creator><creator>LU XIUPING</creator><creator>WANG GENGFENG</creator><creator>XIONG XIONG</creator><creator>LI KAIFENG</creator><creator>HUANG MOTAO</creator><creator>XU GUANGXIU</creator><scope>EVB</scope></search><sort><creationdate>20210625</creationdate><title>LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance</title><author>ZHANG BO ; WANG XU ; HUANG XIANYUAN ; LU XIUPING ; WANG GENGFENG ; XIONG XIONG ; LI KAIFENG ; HUANG MOTAO ; XU GUANGXIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113033668A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG BO</creatorcontrib><creatorcontrib>WANG XU</creatorcontrib><creatorcontrib>HUANG XIANYUAN</creatorcontrib><creatorcontrib>LU XIUPING</creatorcontrib><creatorcontrib>WANG GENGFENG</creatorcontrib><creatorcontrib>XIONG XIONG</creatorcontrib><creatorcontrib>LI KAIFENG</creatorcontrib><creatorcontrib>HUANG MOTAO</creatorcontrib><creatorcontrib>XU GUANGXIU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG BO</au><au>WANG XU</au><au>HUANG XIANYUAN</au><au>LU XIUPING</au><au>WANG GENGFENG</au><au>XIONG XIONG</au><au>LI KAIFENG</au><au>HUANG MOTAO</au><au>XU GUANGXIU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance</title><date>2021-06-25</date><risdate>2021</risdate><abstract>The invention relates to an LS-SVM algorithm sounding training sample thinning method based on a sample Euclidean distance. The method comprises the following technical characteristics: selecting a sounding training sample used for constructing a seabed trend surface function; determining the sample center of the sounding training sample, and calculating the Euclidean distance from the sounding training sample to the sample center one by one; adopting different Euclidean distances to carry out first-time and second-time thinning on the sounding training sample, comparing mean square errors of the first-time thinning and the second-time thinning to judge the precision index of the seabed trend surface function model, and determining the threshold value of the Euclidean distance on the premise that the precision of the seabed trend surface function model is ensured; and thinning a sounding training sample by using an Euclidean distance threshold, and adjusting combined parameters of an LS-SVM algorithm to const</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113033668A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title LS-SVM algorithm sounding training sample thinning method based on sample Euclidean distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20BO&rft.date=2021-06-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113033668A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true