Esophageal cancer detection method and system based on barium meal radiography image

The invention provides an esophageal cancer detection method and system based on a barium meal contrast image. The method comprises the following steps: acquiring the barium meal contrast image of an esophagus to be detected; performing focus area detection on the barium meal contrast image accordin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHE YIFEI, PAN ANSI, XU SHENGZHOU, LU HAORAN, WU FUBIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHE YIFEI
PAN ANSI
XU SHENGZHOU
LU HAORAN
WU FUBIN
description The invention provides an esophageal cancer detection method and system based on a barium meal contrast image. The method comprises the following steps: acquiring the barium meal contrast image of an esophagus to be detected; performing focus area detection on the barium meal contrast image according to the trained target detection model; wherein the target detection model adopts an improved Faster R-CNN, and a basic network of the target detection model is composed of a convolutional neural network carrying an attention mechanism; obtaining a feature map of the image according to the basic network, and enhancing the feature saliency of the feature map through an attention mechanism; and generating a region of interest and a feature vector of the region of interest according to the feature map, and obtaining detection information of the lesion region according to the feature vector of the region of interest. The attention mechanism is embedded in the basic network, the capability of obtaining the features of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112950546A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112950546A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112950546A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywGQCBAkShQFUVGljzb2I7YUf-Q1RW6PCw5ANcWbN-uq7yREwxN4JsVeIZFGhso2eHLIJmhir0kWyXA0skBTmUZO9uOKUX6JtQ1T4mgWsq60ttXqzbNg9-Om2j-6vn0eEMMAiazgkYf2VdenW3NsLtf7-R_nC4zkOLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Esophageal cancer detection method and system based on barium meal radiography image</title><source>esp@cenet</source><creator>SHE YIFEI ; PAN ANSI ; XU SHENGZHOU ; LU HAORAN ; WU FUBIN</creator><creatorcontrib>SHE YIFEI ; PAN ANSI ; XU SHENGZHOU ; LU HAORAN ; WU FUBIN</creatorcontrib><description>The invention provides an esophageal cancer detection method and system based on a barium meal contrast image. The method comprises the following steps: acquiring the barium meal contrast image of an esophagus to be detected; performing focus area detection on the barium meal contrast image according to the trained target detection model; wherein the target detection model adopts an improved Faster R-CNN, and a basic network of the target detection model is composed of a convolutional neural network carrying an attention mechanism; obtaining a feature map of the image according to the basic network, and enhancing the feature saliency of the feature map through an attention mechanism; and generating a region of interest and a feature vector of the region of interest according to the feature map, and obtaining detection information of the lesion region according to the feature vector of the region of interest. The attention mechanism is embedded in the basic network, the capability of obtaining the features of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210611&amp;DB=EPODOC&amp;CC=CN&amp;NR=112950546A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210611&amp;DB=EPODOC&amp;CC=CN&amp;NR=112950546A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHE YIFEI</creatorcontrib><creatorcontrib>PAN ANSI</creatorcontrib><creatorcontrib>XU SHENGZHOU</creatorcontrib><creatorcontrib>LU HAORAN</creatorcontrib><creatorcontrib>WU FUBIN</creatorcontrib><title>Esophageal cancer detection method and system based on barium meal radiography image</title><description>The invention provides an esophageal cancer detection method and system based on a barium meal contrast image. The method comprises the following steps: acquiring the barium meal contrast image of an esophagus to be detected; performing focus area detection on the barium meal contrast image according to the trained target detection model; wherein the target detection model adopts an improved Faster R-CNN, and a basic network of the target detection model is composed of a convolutional neural network carrying an attention mechanism; obtaining a feature map of the image according to the basic network, and enhancing the feature saliency of the feature map through an attention mechanism; and generating a region of interest and a feature vector of the region of interest according to the feature map, and obtaining detection information of the lesion region according to the feature vector of the region of interest. The attention mechanism is embedded in the basic network, the capability of obtaining the features of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywGQCBAkShQFUVGljzb2I7YUf-Q1RW6PCw5ANcWbN-uq7yREwxN4JsVeIZFGhso2eHLIJmhir0kWyXA0skBTmUZO9uOKUX6JtQ1T4mgWsq60ttXqzbNg9-Om2j-6vn0eEMMAiazgkYf2VdenW3NsLtf7-R_nC4zkOLI</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>SHE YIFEI</creator><creator>PAN ANSI</creator><creator>XU SHENGZHOU</creator><creator>LU HAORAN</creator><creator>WU FUBIN</creator><scope>EVB</scope></search><sort><creationdate>20210611</creationdate><title>Esophageal cancer detection method and system based on barium meal radiography image</title><author>SHE YIFEI ; PAN ANSI ; XU SHENGZHOU ; LU HAORAN ; WU FUBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112950546A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHE YIFEI</creatorcontrib><creatorcontrib>PAN ANSI</creatorcontrib><creatorcontrib>XU SHENGZHOU</creatorcontrib><creatorcontrib>LU HAORAN</creatorcontrib><creatorcontrib>WU FUBIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHE YIFEI</au><au>PAN ANSI</au><au>XU SHENGZHOU</au><au>LU HAORAN</au><au>WU FUBIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Esophageal cancer detection method and system based on barium meal radiography image</title><date>2021-06-11</date><risdate>2021</risdate><abstract>The invention provides an esophageal cancer detection method and system based on a barium meal contrast image. The method comprises the following steps: acquiring the barium meal contrast image of an esophagus to be detected; performing focus area detection on the barium meal contrast image according to the trained target detection model; wherein the target detection model adopts an improved Faster R-CNN, and a basic network of the target detection model is composed of a convolutional neural network carrying an attention mechanism; obtaining a feature map of the image according to the basic network, and enhancing the feature saliency of the feature map through an attention mechanism; and generating a region of interest and a feature vector of the region of interest according to the feature map, and obtaining detection information of the lesion region according to the feature vector of the region of interest. The attention mechanism is embedded in the basic network, the capability of obtaining the features of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112950546A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Esophageal cancer detection method and system based on barium meal radiography image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHE%20YIFEI&rft.date=2021-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112950546A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true