Video image segmentation stability improving method based on loss function

The invention discloses a target segmentation stability improvement method based on a loss function. The method comprises the following steps: S1, simulating a video sequence; S2, training the model; S3, performing fine adjustment on the pre-training model; and S4, introducing a stability loss adjus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GONG ENLAI, HANG LIJUN, DING MINGXU, ZHU JIAWEI, XIONG PAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GONG ENLAI
HANG LIJUN
DING MINGXU
ZHU JIAWEI
XIONG PAN
description The invention discloses a target segmentation stability improvement method based on a loss function. The method comprises the following steps: S1, simulating a video sequence; S2, training the model; S3, performing fine adjustment on the pre-training model; and S4, introducing a stability loss adjustment model. According to the embodiment of the invention, a detector constructed for a deep learning scheme not only improves the precision, but also remarkably improves the consistency of the same target in continuous frames at the boundary under visual verification, reduces a large amount of wrong segmentation and hole missing segmentation, improves the segmentation stability of a static image training model under video data, and improves the segmentation efficiency. And the jitter problem of video segmentation is effectively relieved. The stability loss is introduced into the loss function, the segmentation precision is improved, and the optimization of the video data segmentation precision is realized. 本发明公开了基
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112949529A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112949529A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112949529A3</originalsourceid><addsrcrecordid>eNrjZPAKy0xJzVfIzE1MT1UoTk3PTc0rSSzJzM9TKC5JTMrMySypBEoWFOWXZealK-SmlmTkpygkJRanpigA1eTkFxcrpJXmJYN08DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MjSxNLUyNLR2Ni1AAAYA01oQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Video image segmentation stability improving method based on loss function</title><source>esp@cenet</source><creator>GONG ENLAI ; HANG LIJUN ; DING MINGXU ; ZHU JIAWEI ; XIONG PAN</creator><creatorcontrib>GONG ENLAI ; HANG LIJUN ; DING MINGXU ; ZHU JIAWEI ; XIONG PAN</creatorcontrib><description>The invention discloses a target segmentation stability improvement method based on a loss function. The method comprises the following steps: S1, simulating a video sequence; S2, training the model; S3, performing fine adjustment on the pre-training model; and S4, introducing a stability loss adjustment model. According to the embodiment of the invention, a detector constructed for a deep learning scheme not only improves the precision, but also remarkably improves the consistency of the same target in continuous frames at the boundary under visual verification, reduces a large amount of wrong segmentation and hole missing segmentation, improves the segmentation stability of a static image training model under video data, and improves the segmentation efficiency. And the jitter problem of video segmentation is effectively relieved. The stability loss is introduced into the loss function, the segmentation precision is improved, and the optimization of the video data segmentation precision is realized. 本发明公开了基</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210611&amp;DB=EPODOC&amp;CC=CN&amp;NR=112949529A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210611&amp;DB=EPODOC&amp;CC=CN&amp;NR=112949529A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GONG ENLAI</creatorcontrib><creatorcontrib>HANG LIJUN</creatorcontrib><creatorcontrib>DING MINGXU</creatorcontrib><creatorcontrib>ZHU JIAWEI</creatorcontrib><creatorcontrib>XIONG PAN</creatorcontrib><title>Video image segmentation stability improving method based on loss function</title><description>The invention discloses a target segmentation stability improvement method based on a loss function. The method comprises the following steps: S1, simulating a video sequence; S2, training the model; S3, performing fine adjustment on the pre-training model; and S4, introducing a stability loss adjustment model. According to the embodiment of the invention, a detector constructed for a deep learning scheme not only improves the precision, but also remarkably improves the consistency of the same target in continuous frames at the boundary under visual verification, reduces a large amount of wrong segmentation and hole missing segmentation, improves the segmentation stability of a static image training model under video data, and improves the segmentation efficiency. And the jitter problem of video segmentation is effectively relieved. The stability loss is introduced into the loss function, the segmentation precision is improved, and the optimization of the video data segmentation precision is realized. 本发明公开了基</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAKy0xJzVfIzE1MT1UoTk3PTc0rSSzJzM9TKC5JTMrMySypBEoWFOWXZealK-SmlmTkpygkJRanpigA1eTkFxcrpJXmJYN08DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MjSxNLUyNLR2Ni1AAAYA01oQ</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>GONG ENLAI</creator><creator>HANG LIJUN</creator><creator>DING MINGXU</creator><creator>ZHU JIAWEI</creator><creator>XIONG PAN</creator><scope>EVB</scope></search><sort><creationdate>20210611</creationdate><title>Video image segmentation stability improving method based on loss function</title><author>GONG ENLAI ; HANG LIJUN ; DING MINGXU ; ZHU JIAWEI ; XIONG PAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112949529A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>GONG ENLAI</creatorcontrib><creatorcontrib>HANG LIJUN</creatorcontrib><creatorcontrib>DING MINGXU</creatorcontrib><creatorcontrib>ZHU JIAWEI</creatorcontrib><creatorcontrib>XIONG PAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GONG ENLAI</au><au>HANG LIJUN</au><au>DING MINGXU</au><au>ZHU JIAWEI</au><au>XIONG PAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Video image segmentation stability improving method based on loss function</title><date>2021-06-11</date><risdate>2021</risdate><abstract>The invention discloses a target segmentation stability improvement method based on a loss function. The method comprises the following steps: S1, simulating a video sequence; S2, training the model; S3, performing fine adjustment on the pre-training model; and S4, introducing a stability loss adjustment model. According to the embodiment of the invention, a detector constructed for a deep learning scheme not only improves the precision, but also remarkably improves the consistency of the same target in continuous frames at the boundary under visual verification, reduces a large amount of wrong segmentation and hole missing segmentation, improves the segmentation stability of a static image training model under video data, and improves the segmentation efficiency. And the jitter problem of video segmentation is effectively relieved. The stability loss is introduced into the loss function, the segmentation precision is improved, and the optimization of the video data segmentation precision is realized. 本发明公开了基</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112949529A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Video image segmentation stability improving method based on loss function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GONG%20ENLAI&rft.date=2021-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112949529A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true