FGn and Poisson process-based power Internet of Things flow prediction method

The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage librari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN DUANYUN, ZHENG JUNRONG, LIU ZUFENG, LI YUANJIU, LIN ZHIHANG, ZHANG HONGPO, WU GUANXIONG, CHEN SHIMING, YAN SIHAI, XIE YONGTIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN DUANYUN
ZHENG JUNRONG
LIU ZUFENG
LI YUANJIU
LIN ZHIHANG
ZHANG HONGPO
WU GUANXIONG
CHEN SHIMING
YAN SIHAI
XIE YONGTIAN
description The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112910984A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112910984A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112910984A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAMALMwIOAP5gGVCDDQEVUUGEAM3auQOG2kYkdxpH6fDDyA6Za7W6pHeyUw5ODFQYQJYmKLItXbCDqIPGOCO2VMhBnYQzcGGgT8xHNx0QWbQ8k-mEd2a7XwZhLc_LhS2_bSNbcKI_co0Vgsm755ar2v9a4-Hc-Hf5wvnck14A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><source>esp@cenet</source><creator>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</creator><creatorcontrib>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</creatorcontrib><description>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210604&amp;DB=EPODOC&amp;CC=CN&amp;NR=112910984A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210604&amp;DB=EPODOC&amp;CC=CN&amp;NR=112910984A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN DUANYUN</creatorcontrib><creatorcontrib>ZHENG JUNRONG</creatorcontrib><creatorcontrib>LIU ZUFENG</creatorcontrib><creatorcontrib>LI YUANJIU</creatorcontrib><creatorcontrib>LIN ZHIHANG</creatorcontrib><creatorcontrib>ZHANG HONGPO</creatorcontrib><creatorcontrib>WU GUANXIONG</creatorcontrib><creatorcontrib>CHEN SHIMING</creatorcontrib><creatorcontrib>YAN SIHAI</creatorcontrib><creatorcontrib>XIE YONGTIAN</creatorcontrib><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><description>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMALMwIOAP5gGVCDDQEVUUGEAM3auQOG2kYkdxpH6fDDyA6Za7W6pHeyUw5ODFQYQJYmKLItXbCDqIPGOCO2VMhBnYQzcGGgT8xHNx0QWbQ8k-mEd2a7XwZhLc_LhS2_bSNbcKI_co0Vgsm755ar2v9a4-Hc-Hf5wvnck14A</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>CHEN DUANYUN</creator><creator>ZHENG JUNRONG</creator><creator>LIU ZUFENG</creator><creator>LI YUANJIU</creator><creator>LIN ZHIHANG</creator><creator>ZHANG HONGPO</creator><creator>WU GUANXIONG</creator><creator>CHEN SHIMING</creator><creator>YAN SIHAI</creator><creator>XIE YONGTIAN</creator><scope>EVB</scope></search><sort><creationdate>20210604</creationdate><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><author>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112910984A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN DUANYUN</creatorcontrib><creatorcontrib>ZHENG JUNRONG</creatorcontrib><creatorcontrib>LIU ZUFENG</creatorcontrib><creatorcontrib>LI YUANJIU</creatorcontrib><creatorcontrib>LIN ZHIHANG</creatorcontrib><creatorcontrib>ZHANG HONGPO</creatorcontrib><creatorcontrib>WU GUANXIONG</creatorcontrib><creatorcontrib>CHEN SHIMING</creatorcontrib><creatorcontrib>YAN SIHAI</creatorcontrib><creatorcontrib>XIE YONGTIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN DUANYUN</au><au>ZHENG JUNRONG</au><au>LIU ZUFENG</au><au>LI YUANJIU</au><au>LIN ZHIHANG</au><au>ZHANG HONGPO</au><au>WU GUANXIONG</au><au>CHEN SHIMING</au><au>YAN SIHAI</au><au>XIE YONGTIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><date>2021-06-04</date><risdate>2021</risdate><abstract>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112910984A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title FGn and Poisson process-based power Internet of Things flow prediction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20DUANYUN&rft.date=2021-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112910984A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true