FGn and Poisson process-based power Internet of Things flow prediction method
The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage librari...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN DUANYUN ZHENG JUNRONG LIU ZUFENG LI YUANJIU LIN ZHIHANG ZHANG HONGPO WU GUANXIONG CHEN SHIMING YAN SIHAI XIE YONGTIAN |
description | The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112910984A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112910984A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112910984A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAMALMwIOAP5gGVCDDQEVUUGEAM3auQOG2kYkdxpH6fDDyA6Za7W6pHeyUw5ODFQYQJYmKLItXbCDqIPGOCO2VMhBnYQzcGGgT8xHNx0QWbQ8k-mEd2a7XwZhLc_LhS2_bSNbcKI_co0Vgsm755ar2v9a4-Hc-Hf5wvnck14A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><source>esp@cenet</source><creator>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</creator><creatorcontrib>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</creatorcontrib><description>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210604&DB=EPODOC&CC=CN&NR=112910984A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210604&DB=EPODOC&CC=CN&NR=112910984A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN DUANYUN</creatorcontrib><creatorcontrib>ZHENG JUNRONG</creatorcontrib><creatorcontrib>LIU ZUFENG</creatorcontrib><creatorcontrib>LI YUANJIU</creatorcontrib><creatorcontrib>LIN ZHIHANG</creatorcontrib><creatorcontrib>ZHANG HONGPO</creatorcontrib><creatorcontrib>WU GUANXIONG</creatorcontrib><creatorcontrib>CHEN SHIMING</creatorcontrib><creatorcontrib>YAN SIHAI</creatorcontrib><creatorcontrib>XIE YONGTIAN</creatorcontrib><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><description>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMALMwIOAP5gGVCDDQEVUUGEAM3auQOG2kYkdxpH6fDDyA6Za7W6pHeyUw5ODFQYQJYmKLItXbCDqIPGOCO2VMhBnYQzcGGgT8xHNx0QWbQ8k-mEd2a7XwZhLc_LhS2_bSNbcKI_co0Vgsm755ar2v9a4-Hc-Hf5wvnck14A</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>CHEN DUANYUN</creator><creator>ZHENG JUNRONG</creator><creator>LIU ZUFENG</creator><creator>LI YUANJIU</creator><creator>LIN ZHIHANG</creator><creator>ZHANG HONGPO</creator><creator>WU GUANXIONG</creator><creator>CHEN SHIMING</creator><creator>YAN SIHAI</creator><creator>XIE YONGTIAN</creator><scope>EVB</scope></search><sort><creationdate>20210604</creationdate><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><author>CHEN DUANYUN ; ZHENG JUNRONG ; LIU ZUFENG ; LI YUANJIU ; LIN ZHIHANG ; ZHANG HONGPO ; WU GUANXIONG ; CHEN SHIMING ; YAN SIHAI ; XIE YONGTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112910984A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN DUANYUN</creatorcontrib><creatorcontrib>ZHENG JUNRONG</creatorcontrib><creatorcontrib>LIU ZUFENG</creatorcontrib><creatorcontrib>LI YUANJIU</creatorcontrib><creatorcontrib>LIN ZHIHANG</creatorcontrib><creatorcontrib>ZHANG HONGPO</creatorcontrib><creatorcontrib>WU GUANXIONG</creatorcontrib><creatorcontrib>CHEN SHIMING</creatorcontrib><creatorcontrib>YAN SIHAI</creatorcontrib><creatorcontrib>XIE YONGTIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN DUANYUN</au><au>ZHENG JUNRONG</au><au>LIU ZUFENG</au><au>LI YUANJIU</au><au>LIN ZHIHANG</au><au>ZHANG HONGPO</au><au>WU GUANXIONG</au><au>CHEN SHIMING</au><au>YAN SIHAI</au><au>XIE YONGTIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FGn and Poisson process-based power Internet of Things flow prediction method</title><date>2021-06-04</date><risdate>2021</risdate><abstract>The invention relates to an FGn and Poisson process-based power Internet of Things traffic prediction method, which comprises the following steps of: carrying out data classification on power Internet of Things access nodes, and establishing a plurality of traffic characteristic data storage libraries according to the classification; collecting data according to the classification of each flow characteristic database; effective data in a specific time node being selected, data preprocessing and feature extraction being carried out, and data features being obtained; establishing a preliminary flow prediction model according to the data features, and constructing a fractional order Gaussian noise model and a Poisson distribution data model; the fractional order Gaussian noise model and the Poisson distribution data model being merged into the initial flow prediction model for denoising, and a single-time-node prediction model being formed; and repeating the steps to generate prediction models of single time nod</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112910984A |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | FGn and Poisson process-based power Internet of Things flow prediction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20DUANYUN&rft.date=2021-06-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112910984A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |