Model generation method and device, object classification method and device, electronic equipment and medium

The embodiment of the invention discloses a model generation method and device, an object classification method and device, electronic equipment and a storage medium. The model generation method comprises the steps of acquiring a to-be-trained classification model and a plurality of unlabeled object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JINLAI, WEN BIN, DIAO QISHUAI, JIANG YI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JINLAI
WEN BIN
DIAO QISHUAI
JIANG YI
description The embodiment of the invention discloses a model generation method and device, an object classification method and device, electronic equipment and a storage medium. The model generation method comprises the steps of acquiring a to-be-trained classification model and a plurality of unlabeled objects, wherein the to-be-trained classification model comprises a classification prediction module and a loss function determination module; inputting each unlabeled object into a classification prediction module, and determining a pseudo classification result of each unlabeled object according to each unlabeled prediction result output by the classification prediction module; and inputting each unlabeled prediction result and the corresponding pseudo classification result into a loss function determination module, adjusting network parameters in a classification prediction module according to an output result of the loss function determination module, and generating an object classification model. According to the tec
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112861935A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112861935A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112861935A3</originalsourceid><addsrcrecordid>eNqNzr0OAUEUhuFtFIJ7OHqKsSGUsiEaKv1mnPl2HZk_O7Ou30a0EtXbPMU7Luw5GFhq4dHpLMGTQ74HQ9obMngJY0Hh9gBnYqtTkkb4J4QdXBe8MOHZS3Tw-QMcjPRuWowabRNm306K-fFwrU5LxFAjRc3DRq6ri1Kr7UbtyvW-_Me8AQkFQa8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Model generation method and device, object classification method and device, electronic equipment and medium</title><source>esp@cenet</source><creator>LIU JINLAI ; WEN BIN ; DIAO QISHUAI ; JIANG YI</creator><creatorcontrib>LIU JINLAI ; WEN BIN ; DIAO QISHUAI ; JIANG YI</creatorcontrib><description>The embodiment of the invention discloses a model generation method and device, an object classification method and device, electronic equipment and a storage medium. The model generation method comprises the steps of acquiring a to-be-trained classification model and a plurality of unlabeled objects, wherein the to-be-trained classification model comprises a classification prediction module and a loss function determination module; inputting each unlabeled object into a classification prediction module, and determining a pseudo classification result of each unlabeled object according to each unlabeled prediction result output by the classification prediction module; and inputting each unlabeled prediction result and the corresponding pseudo classification result into a loss function determination module, adjusting network parameters in a classification prediction module according to an output result of the loss function determination module, and generating an object classification model. According to the tec</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210528&amp;DB=EPODOC&amp;CC=CN&amp;NR=112861935A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210528&amp;DB=EPODOC&amp;CC=CN&amp;NR=112861935A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JINLAI</creatorcontrib><creatorcontrib>WEN BIN</creatorcontrib><creatorcontrib>DIAO QISHUAI</creatorcontrib><creatorcontrib>JIANG YI</creatorcontrib><title>Model generation method and device, object classification method and device, electronic equipment and medium</title><description>The embodiment of the invention discloses a model generation method and device, an object classification method and device, electronic equipment and a storage medium. The model generation method comprises the steps of acquiring a to-be-trained classification model and a plurality of unlabeled objects, wherein the to-be-trained classification model comprises a classification prediction module and a loss function determination module; inputting each unlabeled object into a classification prediction module, and determining a pseudo classification result of each unlabeled object according to each unlabeled prediction result output by the classification prediction module; and inputting each unlabeled prediction result and the corresponding pseudo classification result into a loss function determination module, adjusting network parameters in a classification prediction module according to an output result of the loss function determination module, and generating an object classification model. According to the tec</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzr0OAUEUhuFtFIJ7OHqKsSGUsiEaKv1mnPl2HZk_O7Ou30a0EtXbPMU7Luw5GFhq4dHpLMGTQ74HQ9obMngJY0Hh9gBnYqtTkkb4J4QdXBe8MOHZS3Tw-QMcjPRuWowabRNm306K-fFwrU5LxFAjRc3DRq6ri1Kr7UbtyvW-_Me8AQkFQa8</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>LIU JINLAI</creator><creator>WEN BIN</creator><creator>DIAO QISHUAI</creator><creator>JIANG YI</creator><scope>EVB</scope></search><sort><creationdate>20210528</creationdate><title>Model generation method and device, object classification method and device, electronic equipment and medium</title><author>LIU JINLAI ; WEN BIN ; DIAO QISHUAI ; JIANG YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112861935A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JINLAI</creatorcontrib><creatorcontrib>WEN BIN</creatorcontrib><creatorcontrib>DIAO QISHUAI</creatorcontrib><creatorcontrib>JIANG YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JINLAI</au><au>WEN BIN</au><au>DIAO QISHUAI</au><au>JIANG YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Model generation method and device, object classification method and device, electronic equipment and medium</title><date>2021-05-28</date><risdate>2021</risdate><abstract>The embodiment of the invention discloses a model generation method and device, an object classification method and device, electronic equipment and a storage medium. The model generation method comprises the steps of acquiring a to-be-trained classification model and a plurality of unlabeled objects, wherein the to-be-trained classification model comprises a classification prediction module and a loss function determination module; inputting each unlabeled object into a classification prediction module, and determining a pseudo classification result of each unlabeled object according to each unlabeled prediction result output by the classification prediction module; and inputting each unlabeled prediction result and the corresponding pseudo classification result into a loss function determination module, adjusting network parameters in a classification prediction module according to an output result of the loss function determination module, and generating an object classification model. According to the tec</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112861935A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Model generation method and device, object classification method and device, electronic equipment and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JINLAI&rft.date=2021-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112861935A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true