Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component

The invention relates to the field of advanced manufacturing, in particular to a stability domain prediction method for milling of a large weak-rigidity thin-wall special-shaped component. A cutter tooth period is divided into a free vibration section and a forced vibration section, and then the for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG WEN'AN, CHU JINHUI, HUANG CHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG WEN'AN
CHU JINHUI
HUANG CHAO
description The invention relates to the field of advanced manufacturing, in particular to a stability domain prediction method for milling of a large weak-rigidity thin-wall special-shaped component. A cutter tooth period is divided into a free vibration section and a forced vibration section, and then the forced vibration section is equally divided into a plurality of discrete intervals by using a Lagrange and Hermite numerical integration method so as to obtain a transfer matrix of a milling system; and finally, a characteristic value of a transfer matrix of the milling system is judged by a Floquet theory to obtain a stability lobe graph of the dynamic milling system of the large weak-rigidity thin-wall special-shaped component. Meanwhile, in the process of obtaining the stability lobe graph, a fine integration method is introduced to calculate the index matrix instead of directly calculating the index matrix, matrix inversion in the index matrix calculation process is reduced, and the defect that a traditional numer
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112836306A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112836306A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112836306A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEuDqK-w_kAAWuhuJaiOLnoXs7k2h5eciEJFN9eBB_A6V--f13RveCThcsbnHrkADGRY1tYA3gqszoYNYFnEQ4TCKaJYCF8mcQTu-9YZg5mQRHIkSyjmDxjJAdWfdRAoWyr1YiSaffrptpfzo_-aijqQDmipUBl6G91fTw1bXNou-Yf8wF5Bz_F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component</title><source>esp@cenet</source><creator>YANG WEN'AN ; CHU JINHUI ; HUANG CHAO</creator><creatorcontrib>YANG WEN'AN ; CHU JINHUI ; HUANG CHAO</creatorcontrib><description>The invention relates to the field of advanced manufacturing, in particular to a stability domain prediction method for milling of a large weak-rigidity thin-wall special-shaped component. A cutter tooth period is divided into a free vibration section and a forced vibration section, and then the forced vibration section is equally divided into a plurality of discrete intervals by using a Lagrange and Hermite numerical integration method so as to obtain a transfer matrix of a milling system; and finally, a characteristic value of a transfer matrix of the milling system is judged by a Floquet theory to obtain a stability lobe graph of the dynamic milling system of the large weak-rigidity thin-wall special-shaped component. Meanwhile, in the process of obtaining the stability lobe graph, a fine integration method is introduced to calculate the index matrix instead of directly calculating the index matrix, matrix inversion in the index matrix calculation process is reduced, and the defect that a traditional numer</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210525&amp;DB=EPODOC&amp;CC=CN&amp;NR=112836306A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210525&amp;DB=EPODOC&amp;CC=CN&amp;NR=112836306A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG WEN'AN</creatorcontrib><creatorcontrib>CHU JINHUI</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><title>Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component</title><description>The invention relates to the field of advanced manufacturing, in particular to a stability domain prediction method for milling of a large weak-rigidity thin-wall special-shaped component. A cutter tooth period is divided into a free vibration section and a forced vibration section, and then the forced vibration section is equally divided into a plurality of discrete intervals by using a Lagrange and Hermite numerical integration method so as to obtain a transfer matrix of a milling system; and finally, a characteristic value of a transfer matrix of the milling system is judged by a Floquet theory to obtain a stability lobe graph of the dynamic milling system of the large weak-rigidity thin-wall special-shaped component. Meanwhile, in the process of obtaining the stability lobe graph, a fine integration method is introduced to calculate the index matrix instead of directly calculating the index matrix, matrix inversion in the index matrix calculation process is reduced, and the defect that a traditional numer</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEuDqK-w_kAAWuhuJaiOLnoXs7k2h5eciEJFN9eBB_A6V--f13RveCThcsbnHrkADGRY1tYA3gqszoYNYFnEQ4TCKaJYCF8mcQTu-9YZg5mQRHIkSyjmDxjJAdWfdRAoWyr1YiSaffrptpfzo_-aijqQDmipUBl6G91fTw1bXNou-Yf8wF5Bz_F</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>YANG WEN'AN</creator><creator>CHU JINHUI</creator><creator>HUANG CHAO</creator><scope>EVB</scope></search><sort><creationdate>20210525</creationdate><title>Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component</title><author>YANG WEN'AN ; CHU JINHUI ; HUANG CHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112836306A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG WEN'AN</creatorcontrib><creatorcontrib>CHU JINHUI</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG WEN'AN</au><au>CHU JINHUI</au><au>HUANG CHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component</title><date>2021-05-25</date><risdate>2021</risdate><abstract>The invention relates to the field of advanced manufacturing, in particular to a stability domain prediction method for milling of a large weak-rigidity thin-wall special-shaped component. A cutter tooth period is divided into a free vibration section and a forced vibration section, and then the forced vibration section is equally divided into a plurality of discrete intervals by using a Lagrange and Hermite numerical integration method so as to obtain a transfer matrix of a milling system; and finally, a characteristic value of a transfer matrix of the milling system is judged by a Floquet theory to obtain a stability lobe graph of the dynamic milling system of the large weak-rigidity thin-wall special-shaped component. Meanwhile, in the process of obtaining the stability lobe graph, a fine integration method is introduced to calculate the index matrix instead of directly calculating the index matrix, matrix inversion in the index matrix calculation process is reduced, and the defect that a traditional numer</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112836306A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Stability domain prediction method for milling large weak-rigidity thin-wall special-shaped component
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20WEN'AN&rft.date=2021-05-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112836306A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true