BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY
The invention provides a battery management system, a battery management method and a method of manufacturing the battery assembly. A battery management system includes a control device (210) and a storage (220). The storage (220) stores at least one trained neural network. The trained neural networ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BABA MISATO WATANABE AKIHIRO HORI TOSHIKI IZUMI JUNTA |
description | The invention provides a battery management system, a battery management method and a method of manufacturing the battery assembly. A battery management system includes a control device (210) and a storage (220). The storage (220) stores at least one trained neural network. The trained neural network includes an input layer that accepts input data that represents a numeric value for each pixel in an image where a prescribed CCV waveform (a CCV charging waveform or a CCV discharging waveform) of a secondary battery is drawn in a region constituted of a predetermined number of pixels, and when input data is input to the input layer, the trained neural network outputs a full charge capacity of the secondary battery. The control device (210) estimates the full charge capacity of a target battery by inputting input data obtained for the target battery into the input layer of the trained neural network.
提供一种电池管理系统、电池管理方法以及电池组的制造方法。电池管理系统具备控制装置(210)和存储装置(220)。存储装置(220)有存储至少一个已学习神经网络。已学习神经网络具备受理对在预先确定的像素数量的区域中描绘了二次电池 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112825167A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112825167A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112825167A3</originalsourceid><addsrcrecordid>eNrjZEh0cgwJcQ2KVPB19HN0d_V19QtRCI4MDnH11VHAIuXrGuLh76Lg6OcCY_q7geRD3RydQ0KDPP3c4bocg4NdfZ18InkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhkYWRqaGZuaMxMWoAy6Mz5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY</title><source>esp@cenet</source><creator>BABA MISATO ; WATANABE AKIHIRO ; HORI TOSHIKI ; IZUMI JUNTA</creator><creatorcontrib>BABA MISATO ; WATANABE AKIHIRO ; HORI TOSHIKI ; IZUMI JUNTA</creatorcontrib><description>The invention provides a battery management system, a battery management method and a method of manufacturing the battery assembly. A battery management system includes a control device (210) and a storage (220). The storage (220) stores at least one trained neural network. The trained neural network includes an input layer that accepts input data that represents a numeric value for each pixel in an image where a prescribed CCV waveform (a CCV charging waveform or a CCV discharging waveform) of a secondary battery is drawn in a region constituted of a predetermined number of pixels, and when input data is input to the input layer, the trained neural network outputs a full charge capacity of the secondary battery. The control device (210) estimates the full charge capacity of a target battery by inputting input data obtained for the target battery into the input layer of the trained neural network.
提供一种电池管理系统、电池管理方法以及电池组的制造方法。电池管理系统具备控制装置(210)和存储装置(220)。存储装置(220)有存储至少一个已学习神经网络。已学习神经网络具备受理对在预先确定的像素数量的区域中描绘了二次电池</description><language>chi ; eng</language><subject>BASIC ELECTRIC ELEMENTS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; PHYSICS ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210521&DB=EPODOC&CC=CN&NR=112825167A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210521&DB=EPODOC&CC=CN&NR=112825167A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BABA MISATO</creatorcontrib><creatorcontrib>WATANABE AKIHIRO</creatorcontrib><creatorcontrib>HORI TOSHIKI</creatorcontrib><creatorcontrib>IZUMI JUNTA</creatorcontrib><title>BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY</title><description>The invention provides a battery management system, a battery management method and a method of manufacturing the battery assembly. A battery management system includes a control device (210) and a storage (220). The storage (220) stores at least one trained neural network. The trained neural network includes an input layer that accepts input data that represents a numeric value for each pixel in an image where a prescribed CCV waveform (a CCV charging waveform or a CCV discharging waveform) of a secondary battery is drawn in a region constituted of a predetermined number of pixels, and when input data is input to the input layer, the trained neural network outputs a full charge capacity of the secondary battery. The control device (210) estimates the full charge capacity of a target battery by inputting input data obtained for the target battery into the input layer of the trained neural network.
提供一种电池管理系统、电池管理方法以及电池组的制造方法。电池管理系统具备控制装置(210)和存储装置(220)。存储装置(220)有存储至少一个已学习神经网络。已学习神经网络具备受理对在预先确定的像素数量的区域中描绘了二次电池</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEh0cgwJcQ2KVPB19HN0d_V19QtRCI4MDnH11VHAIuXrGuLh76Lg6OcCY_q7geRD3RydQ0KDPP3c4bocg4NdfZ18InkYWNMSc4pTeaE0N4Oim2uIs4duakF-fGpxQWJyal5qSbyzn6GhkYWRqaGZuaMxMWoAy6Mz5A</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>BABA MISATO</creator><creator>WATANABE AKIHIRO</creator><creator>HORI TOSHIKI</creator><creator>IZUMI JUNTA</creator><scope>EVB</scope></search><sort><creationdate>20210521</creationdate><title>BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY</title><author>BABA MISATO ; WATANABE AKIHIRO ; HORI TOSHIKI ; IZUMI JUNTA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112825167A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>BABA MISATO</creatorcontrib><creatorcontrib>WATANABE AKIHIRO</creatorcontrib><creatorcontrib>HORI TOSHIKI</creatorcontrib><creatorcontrib>IZUMI JUNTA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BABA MISATO</au><au>WATANABE AKIHIRO</au><au>HORI TOSHIKI</au><au>IZUMI JUNTA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY</title><date>2021-05-21</date><risdate>2021</risdate><abstract>The invention provides a battery management system, a battery management method and a method of manufacturing the battery assembly. A battery management system includes a control device (210) and a storage (220). The storage (220) stores at least one trained neural network. The trained neural network includes an input layer that accepts input data that represents a numeric value for each pixel in an image where a prescribed CCV waveform (a CCV charging waveform or a CCV discharging waveform) of a secondary battery is drawn in a region constituted of a predetermined number of pixels, and when input data is input to the input layer, the trained neural network outputs a full charge capacity of the secondary battery. The control device (210) estimates the full charge capacity of a target battery by inputting input data obtained for the target battery into the input layer of the trained neural network.
提供一种电池管理系统、电池管理方法以及电池组的制造方法。电池管理系统具备控制装置(210)和存储装置(220)。存储装置(220)有存储至少一个已学习神经网络。已学习神经网络具备受理对在预先确定的像素数量的区域中描绘了二次电池</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112825167A |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRICITY PHYSICS PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD AND METHOD OF MANUFACTURING BATTERY ASSEMBLY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BABA%20MISATO&rft.date=2021-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112825167A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |