Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering
The invention aims to provide a hyperspectral image classification algorithm based on wave band clustering and improved recursive filtering, a central wave band in each wave band subset is iteratively found out by utilizing a wave band clustering algorithm based on relative entropy, and information...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MENG FANMIN LIU XUAN QU SHENMING YANG XINYU ZHOU HUAFEI LI XIANG |
description | The invention aims to provide a hyperspectral image classification algorithm based on wave band clustering and improved recursive filtering, a central wave band in each wave band subset is iteratively found out by utilizing a wave band clustering algorithm based on relative entropy, and information of an original spectral wave band is reserved. Compared with an original domain transformation recursive filtering algorithm, the hyperspectral image classification algorithm is advantageous in that Gaussian filtering is carried out on the central wave band set obtained through clustering to serve as a guide image of domain transformation recursive filtering, meanwhile, an improved domain transformation recursive filtering algorithm is carried out on the central wave band of each set, finally, a feature image set of all the central wave bands is obtained, spatial-spectral joint information of a hyperspectral image is fully obtained, and the subsequent classification precision is improved.
本发明的目的在于提供一种基于波段聚类和改进递归滤波的 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112818831A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112818831A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112818831A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQRNNQIOAO5gAUJk1aFIFSUdFHi7MOK_mnXSeIkptjFA5ANXqjN7Ou3t0rIUtCkxmcIg8jKuNAhCwZyBSDAjdGpvzw6g6CgyrVE2YsFIbiTpKRKYzqi-QTx7lIQ_RAQZXXIDayX64YzcRCZWzJLbNttbLgBHe_3FT7y_nWdgdMsUdJYDBg7tur1sdGN02tT_U_zgdnmEsu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering</title><source>esp@cenet</source><creator>MENG FANMIN ; LIU XUAN ; QU SHENMING ; YANG XINYU ; ZHOU HUAFEI ; LI XIANG</creator><creatorcontrib>MENG FANMIN ; LIU XUAN ; QU SHENMING ; YANG XINYU ; ZHOU HUAFEI ; LI XIANG</creatorcontrib><description>The invention aims to provide a hyperspectral image classification algorithm based on wave band clustering and improved recursive filtering, a central wave band in each wave band subset is iteratively found out by utilizing a wave band clustering algorithm based on relative entropy, and information of an original spectral wave band is reserved. Compared with an original domain transformation recursive filtering algorithm, the hyperspectral image classification algorithm is advantageous in that Gaussian filtering is carried out on the central wave band set obtained through clustering to serve as a guide image of domain transformation recursive filtering, meanwhile, an improved domain transformation recursive filtering algorithm is carried out on the central wave band of each set, finally, a feature image set of all the central wave bands is obtained, spatial-spectral joint information of a hyperspectral image is fully obtained, and the subsequent classification precision is improved.
本发明的目的在于提供一种基于波段聚类和改进递归滤波的</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210518&DB=EPODOC&CC=CN&NR=112818831A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210518&DB=EPODOC&CC=CN&NR=112818831A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MENG FANMIN</creatorcontrib><creatorcontrib>LIU XUAN</creatorcontrib><creatorcontrib>QU SHENMING</creatorcontrib><creatorcontrib>YANG XINYU</creatorcontrib><creatorcontrib>ZHOU HUAFEI</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><title>Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering</title><description>The invention aims to provide a hyperspectral image classification algorithm based on wave band clustering and improved recursive filtering, a central wave band in each wave band subset is iteratively found out by utilizing a wave band clustering algorithm based on relative entropy, and information of an original spectral wave band is reserved. Compared with an original domain transformation recursive filtering algorithm, the hyperspectral image classification algorithm is advantageous in that Gaussian filtering is carried out on the central wave band set obtained through clustering to serve as a guide image of domain transformation recursive filtering, meanwhile, an improved domain transformation recursive filtering algorithm is carried out on the central wave band of each set, finally, a feature image set of all the central wave bands is obtained, spatial-spectral joint information of a hyperspectral image is fully obtained, and the subsequent classification precision is improved.
本发明的目的在于提供一种基于波段聚类和改进递归滤波的</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQRNNQIOAO5gAUJk1aFIFSUdFHi7MOK_mnXSeIkptjFA5ANXqjN7Ou3t0rIUtCkxmcIg8jKuNAhCwZyBSDAjdGpvzw6g6CgyrVE2YsFIbiTpKRKYzqi-QTx7lIQ_RAQZXXIDayX64YzcRCZWzJLbNttbLgBHe_3FT7y_nWdgdMsUdJYDBg7tur1sdGN02tT_U_zgdnmEsu</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>MENG FANMIN</creator><creator>LIU XUAN</creator><creator>QU SHENMING</creator><creator>YANG XINYU</creator><creator>ZHOU HUAFEI</creator><creator>LI XIANG</creator><scope>EVB</scope></search><sort><creationdate>20210518</creationdate><title>Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering</title><author>MENG FANMIN ; LIU XUAN ; QU SHENMING ; YANG XINYU ; ZHOU HUAFEI ; LI XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112818831A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MENG FANMIN</creatorcontrib><creatorcontrib>LIU XUAN</creatorcontrib><creatorcontrib>QU SHENMING</creatorcontrib><creatorcontrib>YANG XINYU</creatorcontrib><creatorcontrib>ZHOU HUAFEI</creatorcontrib><creatorcontrib>LI XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MENG FANMIN</au><au>LIU XUAN</au><au>QU SHENMING</au><au>YANG XINYU</au><au>ZHOU HUAFEI</au><au>LI XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering</title><date>2021-05-18</date><risdate>2021</risdate><abstract>The invention aims to provide a hyperspectral image classification algorithm based on wave band clustering and improved recursive filtering, a central wave band in each wave band subset is iteratively found out by utilizing a wave band clustering algorithm based on relative entropy, and information of an original spectral wave band is reserved. Compared with an original domain transformation recursive filtering algorithm, the hyperspectral image classification algorithm is advantageous in that Gaussian filtering is carried out on the central wave band set obtained through clustering to serve as a guide image of domain transformation recursive filtering, meanwhile, an improved domain transformation recursive filtering algorithm is carried out on the central wave band of each set, finally, a feature image set of all the central wave bands is obtained, spatial-spectral joint information of a hyperspectral image is fully obtained, and the subsequent classification precision is improved.
本发明的目的在于提供一种基于波段聚类和改进递归滤波的</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112818831A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Hyperspectral image classification algorithm based on wave band clustering and improved domain transformation recursive filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MENG%20FANMIN&rft.date=2021-05-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112818831A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |