Edge calculation motor oil stain identification method based on deep learning
The invention discloses an edge calculation motor oil stain identification method based on deep learning. The method comprises the following steps: S1, making a sample data set; s2, completing training and clipping of a deep learning model in Amazon SageMaker, namely, introducing Focal loss into a c...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUE ZHUANGZHUANG LI PENG LI KANG ZHONG FANFAN ZHANG HAOWEI GU MINGCEN LI YUEHUA SUN JIAHAO |
description | The invention discloses an edge calculation motor oil stain identification method based on deep learning. The method comprises the following steps: S1, making a sample data set; s2, completing training and clipping of a deep learning model in Amazon SageMaker, namely, introducing Focal loss into a confidence loss function of a YOLOv3 algorithm, and training and clipping the deep learning model by using the loss function; s3, remotely deploying the deep learning model to the edge device which builds the AWS IoT Greengrass environment; and S4, importing an industrial machine picture shot in real time into the edge equipment, automatically identifying whether oil leakage occurs or not through a deep learning model, and outputting a result. According to the oil stain identification method, the purposes of training, clipping and reasoning prediction separation of a deep learning model are achieved, the deep learning model is trained and clipped at the cloud, and the clipped deep learning model adapts to resources |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112802006A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112802006A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112802006A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRbexEPUO4wGETQSxlRCx0co-jLs_ycA6E7Lr_bXIAawej_fW7t7GARQ4hU_iIqb0tmIzmSTKhUVJIrRIL2HJKKNFenFGpJ9HYKIEnlV02LpVzyljt3Dj9tf22dwOmKxDnjhAUbrmUVX12dfeny7Hf54v04E2CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Edge calculation motor oil stain identification method based on deep learning</title><source>esp@cenet</source><creator>YUE ZHUANGZHUANG ; LI PENG ; LI KANG ; ZHONG FANFAN ; ZHANG HAOWEI ; GU MINGCEN ; LI YUEHUA ; SUN JIAHAO</creator><creatorcontrib>YUE ZHUANGZHUANG ; LI PENG ; LI KANG ; ZHONG FANFAN ; ZHANG HAOWEI ; GU MINGCEN ; LI YUEHUA ; SUN JIAHAO</creatorcontrib><description>The invention discloses an edge calculation motor oil stain identification method based on deep learning. The method comprises the following steps: S1, making a sample data set; s2, completing training and clipping of a deep learning model in Amazon SageMaker, namely, introducing Focal loss into a confidence loss function of a YOLOv3 algorithm, and training and clipping the deep learning model by using the loss function; s3, remotely deploying the deep learning model to the edge device which builds the AWS IoT Greengrass environment; and S4, importing an industrial machine picture shot in real time into the edge equipment, automatically identifying whether oil leakage occurs or not through a deep learning model, and outputting a result. According to the oil stain identification method, the purposes of training, clipping and reasoning prediction separation of a deep learning model are achieved, the deep learning model is trained and clipped at the cloud, and the clipped deep learning model adapts to resources</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210514&DB=EPODOC&CC=CN&NR=112802006A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210514&DB=EPODOC&CC=CN&NR=112802006A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE ZHUANGZHUANG</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>LI KANG</creatorcontrib><creatorcontrib>ZHONG FANFAN</creatorcontrib><creatorcontrib>ZHANG HAOWEI</creatorcontrib><creatorcontrib>GU MINGCEN</creatorcontrib><creatorcontrib>LI YUEHUA</creatorcontrib><creatorcontrib>SUN JIAHAO</creatorcontrib><title>Edge calculation motor oil stain identification method based on deep learning</title><description>The invention discloses an edge calculation motor oil stain identification method based on deep learning. The method comprises the following steps: S1, making a sample data set; s2, completing training and clipping of a deep learning model in Amazon SageMaker, namely, introducing Focal loss into a confidence loss function of a YOLOv3 algorithm, and training and clipping the deep learning model by using the loss function; s3, remotely deploying the deep learning model to the edge device which builds the AWS IoT Greengrass environment; and S4, importing an industrial machine picture shot in real time into the edge equipment, automatically identifying whether oil leakage occurs or not through a deep learning model, and outputting a result. According to the oil stain identification method, the purposes of training, clipping and reasoning prediction separation of a deep learning model are achieved, the deep learning model is trained and clipped at the cloud, and the clipped deep learning model adapts to resources</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRbexEPUO4wGETQSxlRCx0co-jLs_ycA6E7Lr_bXIAawej_fW7t7GARQ4hU_iIqb0tmIzmSTKhUVJIrRIL2HJKKNFenFGpJ9HYKIEnlV02LpVzyljt3Dj9tf22dwOmKxDnjhAUbrmUVX12dfeny7Hf54v04E2CQ</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>YUE ZHUANGZHUANG</creator><creator>LI PENG</creator><creator>LI KANG</creator><creator>ZHONG FANFAN</creator><creator>ZHANG HAOWEI</creator><creator>GU MINGCEN</creator><creator>LI YUEHUA</creator><creator>SUN JIAHAO</creator><scope>EVB</scope></search><sort><creationdate>20210514</creationdate><title>Edge calculation motor oil stain identification method based on deep learning</title><author>YUE ZHUANGZHUANG ; LI PENG ; LI KANG ; ZHONG FANFAN ; ZHANG HAOWEI ; GU MINGCEN ; LI YUEHUA ; SUN JIAHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112802006A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE ZHUANGZHUANG</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>LI KANG</creatorcontrib><creatorcontrib>ZHONG FANFAN</creatorcontrib><creatorcontrib>ZHANG HAOWEI</creatorcontrib><creatorcontrib>GU MINGCEN</creatorcontrib><creatorcontrib>LI YUEHUA</creatorcontrib><creatorcontrib>SUN JIAHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE ZHUANGZHUANG</au><au>LI PENG</au><au>LI KANG</au><au>ZHONG FANFAN</au><au>ZHANG HAOWEI</au><au>GU MINGCEN</au><au>LI YUEHUA</au><au>SUN JIAHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Edge calculation motor oil stain identification method based on deep learning</title><date>2021-05-14</date><risdate>2021</risdate><abstract>The invention discloses an edge calculation motor oil stain identification method based on deep learning. The method comprises the following steps: S1, making a sample data set; s2, completing training and clipping of a deep learning model in Amazon SageMaker, namely, introducing Focal loss into a confidence loss function of a YOLOv3 algorithm, and training and clipping the deep learning model by using the loss function; s3, remotely deploying the deep learning model to the edge device which builds the AWS IoT Greengrass environment; and S4, importing an industrial machine picture shot in real time into the edge equipment, automatically identifying whether oil leakage occurs or not through a deep learning model, and outputting a result. According to the oil stain identification method, the purposes of training, clipping and reasoning prediction separation of a deep learning model are achieved, the deep learning model is trained and clipped at the cloud, and the clipped deep learning model adapts to resources</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112802006A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Edge calculation motor oil stain identification method based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20ZHUANGZHUANG&rft.date=2021-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112802006A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |