Citrus huanglongbing image recognition method based on attention mechanism

The invention relates to the field of image recognition, and particularly discloses a citrus huanglongbing image recognition method based on an attention mechanism, and the method specifically comprises the steps: collecting the data of diseased leaves and diseased fruits of citrus huanglongbing as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEI XIAOYI, WEI GUANGLIANG, YAO ZINA, CHEN LUFEI, SU JIAYI, GUAN YUSHENG, WANG XIAODONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEI XIAOYI
WEI GUANGLIANG
YAO ZINA
CHEN LUFEI
SU JIAYI
GUAN YUSHENG
WANG XIAODONG
description The invention relates to the field of image recognition, and particularly discloses a citrus huanglongbing image recognition method based on an attention mechanism, and the method specifically comprises the steps: collecting the data of diseased leaves and diseased fruits of citrus huanglongbing as positive samples, collecting the data of other non-huanglongbing as negative samples, constructing an image classification network based on the attention mechanism, designing a loss function, inputting the training set into the image classification network based on the attention mechanism, carrying out supervised training by adopting the loss function, and inputting the verification set into the trained model for verification in the training process; and loading the trained model parameters to an image classification network based on an attention mechanism, and sequentially inputting thecitrus huanglongbing images of the test set into the network for reasoning to obtain a citrus huanglongbing image classification r
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112801942A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112801942A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112801942A3</originalsourceid><addsrcrecordid>eNrjZPByziwpKi1WyChNzEvPyc9LT8rMS1fIzE1MT1UoSk3OT8_LLMnMz1PITS3JyE9RSEosTk1RAPITS0pS86AyyRmJeZnFuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQyMLA0NLEyNGYGDUAZnw1kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Citrus huanglongbing image recognition method based on attention mechanism</title><source>esp@cenet</source><creator>WEI XIAOYI ; WEI GUANGLIANG ; YAO ZINA ; CHEN LUFEI ; SU JIAYI ; GUAN YUSHENG ; WANG XIAODONG</creator><creatorcontrib>WEI XIAOYI ; WEI GUANGLIANG ; YAO ZINA ; CHEN LUFEI ; SU JIAYI ; GUAN YUSHENG ; WANG XIAODONG</creatorcontrib><description>The invention relates to the field of image recognition, and particularly discloses a citrus huanglongbing image recognition method based on an attention mechanism, and the method specifically comprises the steps: collecting the data of diseased leaves and diseased fruits of citrus huanglongbing as positive samples, collecting the data of other non-huanglongbing as negative samples, constructing an image classification network based on the attention mechanism, designing a loss function, inputting the training set into the image classification network based on the attention mechanism, carrying out supervised training by adopting the loss function, and inputting the verification set into the trained model for verification in the training process; and loading the trained model parameters to an image classification network based on an attention mechanism, and sequentially inputting thecitrus huanglongbing images of the test set into the network for reasoning to obtain a citrus huanglongbing image classification r</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210514&amp;DB=EPODOC&amp;CC=CN&amp;NR=112801942A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210514&amp;DB=EPODOC&amp;CC=CN&amp;NR=112801942A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEI XIAOYI</creatorcontrib><creatorcontrib>WEI GUANGLIANG</creatorcontrib><creatorcontrib>YAO ZINA</creatorcontrib><creatorcontrib>CHEN LUFEI</creatorcontrib><creatorcontrib>SU JIAYI</creatorcontrib><creatorcontrib>GUAN YUSHENG</creatorcontrib><creatorcontrib>WANG XIAODONG</creatorcontrib><title>Citrus huanglongbing image recognition method based on attention mechanism</title><description>The invention relates to the field of image recognition, and particularly discloses a citrus huanglongbing image recognition method based on an attention mechanism, and the method specifically comprises the steps: collecting the data of diseased leaves and diseased fruits of citrus huanglongbing as positive samples, collecting the data of other non-huanglongbing as negative samples, constructing an image classification network based on the attention mechanism, designing a loss function, inputting the training set into the image classification network based on the attention mechanism, carrying out supervised training by adopting the loss function, and inputting the verification set into the trained model for verification in the training process; and loading the trained model parameters to an image classification network based on an attention mechanism, and sequentially inputting thecitrus huanglongbing images of the test set into the network for reasoning to obtain a citrus huanglongbing image classification r</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPByziwpKi1WyChNzEvPyc9LT8rMS1fIzE1MT1UoSk3OT8_LLMnMz1PITS3JyE9RSEosTk1RAPITS0pS86AyyRmJeZnFuTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQyMLA0NLEyNGYGDUAZnw1kg</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>WEI XIAOYI</creator><creator>WEI GUANGLIANG</creator><creator>YAO ZINA</creator><creator>CHEN LUFEI</creator><creator>SU JIAYI</creator><creator>GUAN YUSHENG</creator><creator>WANG XIAODONG</creator><scope>EVB</scope></search><sort><creationdate>20210514</creationdate><title>Citrus huanglongbing image recognition method based on attention mechanism</title><author>WEI XIAOYI ; WEI GUANGLIANG ; YAO ZINA ; CHEN LUFEI ; SU JIAYI ; GUAN YUSHENG ; WANG XIAODONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112801942A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WEI XIAOYI</creatorcontrib><creatorcontrib>WEI GUANGLIANG</creatorcontrib><creatorcontrib>YAO ZINA</creatorcontrib><creatorcontrib>CHEN LUFEI</creatorcontrib><creatorcontrib>SU JIAYI</creatorcontrib><creatorcontrib>GUAN YUSHENG</creatorcontrib><creatorcontrib>WANG XIAODONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEI XIAOYI</au><au>WEI GUANGLIANG</au><au>YAO ZINA</au><au>CHEN LUFEI</au><au>SU JIAYI</au><au>GUAN YUSHENG</au><au>WANG XIAODONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Citrus huanglongbing image recognition method based on attention mechanism</title><date>2021-05-14</date><risdate>2021</risdate><abstract>The invention relates to the field of image recognition, and particularly discloses a citrus huanglongbing image recognition method based on an attention mechanism, and the method specifically comprises the steps: collecting the data of diseased leaves and diseased fruits of citrus huanglongbing as positive samples, collecting the data of other non-huanglongbing as negative samples, constructing an image classification network based on the attention mechanism, designing a loss function, inputting the training set into the image classification network based on the attention mechanism, carrying out supervised training by adopting the loss function, and inputting the verification set into the trained model for verification in the training process; and loading the trained model parameters to an image classification network based on an attention mechanism, and sequentially inputting thecitrus huanglongbing images of the test set into the network for reasoning to obtain a citrus huanglongbing image classification r</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112801942A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Citrus huanglongbing image recognition method based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEI%20XIAOYI&rft.date=2021-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112801942A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true