Data processing method and device, equipment and storage medium
The invention discloses a data processing method and device, equipment and a storage medium, and relates to the field of computer technology and artificial intelligence, in particular to the field of deep learning and cloud computing. According to the specific implementation scheme, obtaining a targ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN QIULIANG LIU HONGYU LAN XIANG LUO TAO |
description | The invention discloses a data processing method and device, equipment and a storage medium, and relates to the field of computer technology and artificial intelligence, in particular to the field of deep learning and cloud computing. According to the specific implementation scheme, obtaining a target code, wherein the target code comprises at least one operator; executing each operator, and automatically obtaining an input variable set and a used variable set in the execution process; and determining irrelevant variables in the input variable set based on the input variable set and the used variable set, and outputting the irrelevant variables. According to the implementation mode, the operator-independent variables are automatically checked and monitored before the newly-added codes of the deep learning framework are combined, so that the situation that video memory occupation is increased and framework performance is reduced due to the fact that the operator-independent variables are introduced into the ne |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112799642A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112799642A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112799642A3</originalsourceid><addsrcrecordid>eNrjZLB3SSxJVCgoyk9OLS7OzEtXyE0tychPUUjMS1FISS3LTE7VUUgtLM0syE3NKwGLFpfkFyWmpwIVpmSW5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDI3NLSzMTI0djYtQAAHQVMMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data processing method and device, equipment and storage medium</title><source>esp@cenet</source><creator>CHEN QIULIANG ; LIU HONGYU ; LAN XIANG ; LUO TAO</creator><creatorcontrib>CHEN QIULIANG ; LIU HONGYU ; LAN XIANG ; LUO TAO</creatorcontrib><description>The invention discloses a data processing method and device, equipment and a storage medium, and relates to the field of computer technology and artificial intelligence, in particular to the field of deep learning and cloud computing. According to the specific implementation scheme, obtaining a target code, wherein the target code comprises at least one operator; executing each operator, and automatically obtaining an input variable set and a used variable set in the execution process; and determining irrelevant variables in the input variable set based on the input variable set and the used variable set, and outputting the irrelevant variables. According to the implementation mode, the operator-independent variables are automatically checked and monitored before the newly-added codes of the deep learning framework are combined, so that the situation that video memory occupation is increased and framework performance is reduced due to the fact that the operator-independent variables are introduced into the ne</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210514&DB=EPODOC&CC=CN&NR=112799642A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210514&DB=EPODOC&CC=CN&NR=112799642A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN QIULIANG</creatorcontrib><creatorcontrib>LIU HONGYU</creatorcontrib><creatorcontrib>LAN XIANG</creatorcontrib><creatorcontrib>LUO TAO</creatorcontrib><title>Data processing method and device, equipment and storage medium</title><description>The invention discloses a data processing method and device, equipment and a storage medium, and relates to the field of computer technology and artificial intelligence, in particular to the field of deep learning and cloud computing. According to the specific implementation scheme, obtaining a target code, wherein the target code comprises at least one operator; executing each operator, and automatically obtaining an input variable set and a used variable set in the execution process; and determining irrelevant variables in the input variable set based on the input variable set and the used variable set, and outputting the irrelevant variables. According to the implementation mode, the operator-independent variables are automatically checked and monitored before the newly-added codes of the deep learning framework are combined, so that the situation that video memory occupation is increased and framework performance is reduced due to the fact that the operator-independent variables are introduced into the ne</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3SSxJVCgoyk9OLS7OzEtXyE0tychPUUjMS1FISS3LTE7VUUgtLM0syE3NKwGLFpfkFyWmpwIVpmSW5vIwsKYl5hSn8kJpbgZFN9cQZw_d1IL8-NTigsTk1LzUknhnP0NDI3NLSzMTI0djYtQAAHQVMMA</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>CHEN QIULIANG</creator><creator>LIU HONGYU</creator><creator>LAN XIANG</creator><creator>LUO TAO</creator><scope>EVB</scope></search><sort><creationdate>20210514</creationdate><title>Data processing method and device, equipment and storage medium</title><author>CHEN QIULIANG ; LIU HONGYU ; LAN XIANG ; LUO TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112799642A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN QIULIANG</creatorcontrib><creatorcontrib>LIU HONGYU</creatorcontrib><creatorcontrib>LAN XIANG</creatorcontrib><creatorcontrib>LUO TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN QIULIANG</au><au>LIU HONGYU</au><au>LAN XIANG</au><au>LUO TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data processing method and device, equipment and storage medium</title><date>2021-05-14</date><risdate>2021</risdate><abstract>The invention discloses a data processing method and device, equipment and a storage medium, and relates to the field of computer technology and artificial intelligence, in particular to the field of deep learning and cloud computing. According to the specific implementation scheme, obtaining a target code, wherein the target code comprises at least one operator; executing each operator, and automatically obtaining an input variable set and a used variable set in the execution process; and determining irrelevant variables in the input variable set based on the input variable set and the used variable set, and outputting the irrelevant variables. According to the implementation mode, the operator-independent variables are automatically checked and monitored before the newly-added codes of the deep learning framework are combined, so that the situation that video memory occupation is increased and framework performance is reduced due to the fact that the operator-independent variables are introduced into the ne</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112799642A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Data processing method and device, equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20QIULIANG&rft.date=2021-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112799642A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |