Self-adaptive neural network training method for image recognition
The invention discloses a self-adaptive neural network training method for image recognition. The method comprises the steps: acquiring and preprocessing an image data set; constructing a convolutional neural network model, and setting an adaptive loss function; inputting the preprocessed image data...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LUO CHUNBO PENG TAO LIU XIANG LUO YANG WANG YANING WEI SHICAI |
description | The invention discloses a self-adaptive neural network training method for image recognition. The method comprises the steps: acquiring and preprocessing an image data set; constructing a convolutional neural network model, and setting an adaptive loss function; inputting the preprocessed image data into a convolutional neural network model for forward propagation to obtain a feature vector and a classification layer weight of the image; calculating an adaptive loss function according to the image feature vector and the classification layer weight, and judging whether the convolutional neural network model converges; performing back propagation on the convolutional neural network model according to the adaptive loss function, and updating the weight of the classification layer; and progressively increasing the number of iterations, and updating the adaptive loss function. Compared with a softmax-based classification loss function training method, the method provided by the invention has the advantages that th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112766399A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112766399A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112766399A3</originalsourceid><addsrcrecordid>eNrjZHAKTs1J001MSSwoySxLVchLLS1KzAFSJeX5RdkKJUWJmXmZeekKuaklGfkpCmn5RQqZuYnpqQpFqcn56XmZJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhevLOfoaGRuZmZsaWlozExagBo4zJ_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-adaptive neural network training method for image recognition</title><source>esp@cenet</source><creator>LUO CHUNBO ; PENG TAO ; LIU XIANG ; LUO YANG ; WANG YANING ; WEI SHICAI</creator><creatorcontrib>LUO CHUNBO ; PENG TAO ; LIU XIANG ; LUO YANG ; WANG YANING ; WEI SHICAI</creatorcontrib><description>The invention discloses a self-adaptive neural network training method for image recognition. The method comprises the steps: acquiring and preprocessing an image data set; constructing a convolutional neural network model, and setting an adaptive loss function; inputting the preprocessed image data into a convolutional neural network model for forward propagation to obtain a feature vector and a classification layer weight of the image; calculating an adaptive loss function according to the image feature vector and the classification layer weight, and judging whether the convolutional neural network model converges; performing back propagation on the convolutional neural network model according to the adaptive loss function, and updating the weight of the classification layer; and progressively increasing the number of iterations, and updating the adaptive loss function. Compared with a softmax-based classification loss function training method, the method provided by the invention has the advantages that th</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210507&DB=EPODOC&CC=CN&NR=112766399A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210507&DB=EPODOC&CC=CN&NR=112766399A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>LIU XIANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WANG YANING</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><title>Self-adaptive neural network training method for image recognition</title><description>The invention discloses a self-adaptive neural network training method for image recognition. The method comprises the steps: acquiring and preprocessing an image data set; constructing a convolutional neural network model, and setting an adaptive loss function; inputting the preprocessed image data into a convolutional neural network model for forward propagation to obtain a feature vector and a classification layer weight of the image; calculating an adaptive loss function according to the image feature vector and the classification layer weight, and judging whether the convolutional neural network model converges; performing back propagation on the convolutional neural network model according to the adaptive loss function, and updating the weight of the classification layer; and progressively increasing the number of iterations, and updating the adaptive loss function. Compared with a softmax-based classification loss function training method, the method provided by the invention has the advantages that th</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAKTs1J001MSSwoySxLVchLLS1KzAFSJeX5RdkKJUWJmXmZeekKuaklGfkpCmn5RQqZuYnpqQpFqcn56XmZJZn5eTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5FWhevLOfoaGRuZmZsaWlozExagBo4zJ_</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>LUO CHUNBO</creator><creator>PENG TAO</creator><creator>LIU XIANG</creator><creator>LUO YANG</creator><creator>WANG YANING</creator><creator>WEI SHICAI</creator><scope>EVB</scope></search><sort><creationdate>20210507</creationdate><title>Self-adaptive neural network training method for image recognition</title><author>LUO CHUNBO ; PENG TAO ; LIU XIANG ; LUO YANG ; WANG YANING ; WEI SHICAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112766399A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO CHUNBO</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>LIU XIANG</creatorcontrib><creatorcontrib>LUO YANG</creatorcontrib><creatorcontrib>WANG YANING</creatorcontrib><creatorcontrib>WEI SHICAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO CHUNBO</au><au>PENG TAO</au><au>LIU XIANG</au><au>LUO YANG</au><au>WANG YANING</au><au>WEI SHICAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-adaptive neural network training method for image recognition</title><date>2021-05-07</date><risdate>2021</risdate><abstract>The invention discloses a self-adaptive neural network training method for image recognition. The method comprises the steps: acquiring and preprocessing an image data set; constructing a convolutional neural network model, and setting an adaptive loss function; inputting the preprocessed image data into a convolutional neural network model for forward propagation to obtain a feature vector and a classification layer weight of the image; calculating an adaptive loss function according to the image feature vector and the classification layer weight, and judging whether the convolutional neural network model converges; performing back propagation on the convolutional neural network model according to the adaptive loss function, and updating the weight of the classification layer; and progressively increasing the number of iterations, and updating the adaptive loss function. Compared with a softmax-based classification loss function training method, the method provided by the invention has the advantages that th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112766399A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Self-adaptive neural network training method for image recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20CHUNBO&rft.date=2021-05-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112766399A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |