MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION

Systems and techniques for multi-phase cloud service node error prediction are described herein. A set of spatial metrics and a set of temporal metrics may be obtained for node devices in a cloud computing platform. The node devices may be evaluated using a spatial machine learning model and a tempo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JO ISAMU, LIN QINGWEI, SUI KAIXIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JO ISAMU
LIN QINGWEI
SUI KAIXIN
description Systems and techniques for multi-phase cloud service node error prediction are described herein. A set of spatial metrics and a set of temporal metrics may be obtained for node devices in a cloud computing platform. The node devices may be evaluated using a spatial machine learning model and a temporal machine learning model to create a spatial output and a temporal output. One or more potentially faulty nodes may be determined based on an evaluation of the spatial output and the temporal output using a ranking model. The one or more potentially faulty nodes may be a subset of the node devices. One or more migration source nodes may be identified from one or more potentially faulty nodes. The one or more migration source nodes may be identified by minimization of a cost of false positive and false negative node detection. 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112740290A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112740290A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112740290A3</originalsourceid><addsrcrecordid>eNrjZND3DfUJ8dQN8HAMdlVw9vEPdVEIdg0K83R2VfDzd3FVcA0K8g9SCAhydfF0DvH09-NhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGRuYmBkaWBo7GxKgBAAm6Jfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION</title><source>esp@cenet</source><creator>JO ISAMU ; LIN QINGWEI ; SUI KAIXIN</creator><creatorcontrib>JO ISAMU ; LIN QINGWEI ; SUI KAIXIN</creatorcontrib><description>Systems and techniques for multi-phase cloud service node error prediction are described herein. A set of spatial metrics and a set of temporal metrics may be obtained for node devices in a cloud computing platform. The node devices may be evaluated using a spatial machine learning model and a temporal machine learning model to create a spatial output and a temporal output. One or more potentially faulty nodes may be determined based on an evaluation of the spatial output and the temporal output using a ranking model. The one or more potentially faulty nodes may be a subset of the node devices. One or more migration source nodes may be identified from one or more potentially faulty nodes. The one or more migration source nodes may be identified by minimization of a cost of false positive and false negative node detection. 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以</description><language>chi ; eng</language><subject>ALARM SYSTEMS ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210430&amp;DB=EPODOC&amp;CC=CN&amp;NR=112740290A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210430&amp;DB=EPODOC&amp;CC=CN&amp;NR=112740290A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JO ISAMU</creatorcontrib><creatorcontrib>LIN QINGWEI</creatorcontrib><creatorcontrib>SUI KAIXIN</creatorcontrib><title>MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION</title><description>Systems and techniques for multi-phase cloud service node error prediction are described herein. A set of spatial metrics and a set of temporal metrics may be obtained for node devices in a cloud computing platform. The node devices may be evaluated using a spatial machine learning model and a temporal machine learning model to create a spatial output and a temporal output. One or more potentially faulty nodes may be determined based on an evaluation of the spatial output and the temporal output using a ranking model. The one or more potentially faulty nodes may be a subset of the node devices. One or more migration source nodes may be identified from one or more potentially faulty nodes. The one or more migration source nodes may be identified by minimization of a cost of false positive and false negative node detection. 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以</description><subject>ALARM SYSTEMS</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND3DfUJ8dQN8HAMdlVw9vEPdVEIdg0K83R2VfDzd3FVcA0K8g9SCAhydfF0DvH09-NhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGRuYmBkaWBo7GxKgBAAm6Jfw</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>JO ISAMU</creator><creator>LIN QINGWEI</creator><creator>SUI KAIXIN</creator><scope>EVB</scope></search><sort><creationdate>20210430</creationdate><title>MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION</title><author>JO ISAMU ; LIN QINGWEI ; SUI KAIXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112740290A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ALARM SYSTEMS</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>JO ISAMU</creatorcontrib><creatorcontrib>LIN QINGWEI</creatorcontrib><creatorcontrib>SUI KAIXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JO ISAMU</au><au>LIN QINGWEI</au><au>SUI KAIXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION</title><date>2021-04-30</date><risdate>2021</risdate><abstract>Systems and techniques for multi-phase cloud service node error prediction are described herein. A set of spatial metrics and a set of temporal metrics may be obtained for node devices in a cloud computing platform. The node devices may be evaluated using a spatial machine learning model and a temporal machine learning model to create a spatial output and a temporal output. One or more potentially faulty nodes may be determined based on an evaluation of the spatial output and the temporal output using a ranking model. The one or more potentially faulty nodes may be a subset of the node devices. One or more migration source nodes may be identified from one or more potentially faulty nodes. The one or more migration source nodes may be identified by minimization of a cost of false positive and false negative node detection. 在此描述了用于多阶段云服务节点错误预测的系统和技术。针对云计算平台中的节点设备,可以获得空间度量集合和时间度量集合。可以使用空间机器学习模型和时间机器学习模型来评估节点设备,以创建空间输出和时间输出。可以基于使用排名模型对空间输出和时间输出的评估,来确定一个或多个潜在故障节点。一个或多个潜在故障节点可以是节点设备的子集。可以从一个或多个潜在故障节点标识一个或多个迁移源节点。可以</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112740290A
source esp@cenet
subjects ALARM SYSTEMS
ORDER TELEGRAPHS
PHYSICS
SIGNALLING
SIGNALLING OR CALLING SYSTEMS
title MULTI-PHASE CLOUD SERVICE NODE ERROR PREDICTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JO%20ISAMU&rft.date=2021-04-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112740290A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true