HRRP radar target identification method based on CN-LSGAN, STFT and CNN

The invention discloses an HRRP radar target identification method based on a constrained naive least squares generative adversarial network (CN-LSGAN), a short-time Fourier transform (STFT) and a convolutional neural network (CNN). The method comprises the following steps that S1, the CN-LSGAN is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUANG LIZHEN, NIE JIANGHUA, LIU YUE, XIAO YONGSHENG, RAO XUAN, LIU YUFAN, QIU XIN, HE FENGSHOU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUANG LIZHEN
NIE JIANGHUA
LIU YUE
XIAO YONGSHENG
RAO XUAN
LIU YUFAN
QIU XIN
HE FENGSHOU
description The invention discloses an HRRP radar target identification method based on a constrained naive least squares generative adversarial network (CN-LSGAN), a short-time Fourier transform (STFT) and a convolutional neural network (CNN). The method comprises the following steps that S1, the CN-LSGAN is used for denoising HRRP data, the network is combined with the characteristics of a least squares generative adversarial network (LSGAN) and Wasserstein generative adversarial nets-gradient penalty (WGAN-GP), and the noisy HRRP data pass through the CN-LSGAN to generate data similar to clean HRRP data to realize data enhancement; S2, time-frequency analysis is carried out on the HRRP data by adopting STFT, and frequency domain and phase features of a target are introduced so as to facilitate feature learning; and S3, target identification is carried out on the data obtained by the time-frequency analysis through the CNN. 本发明专利公开了提出了一种基于约束朴素最小二乘生成对抗网络(Constrained Naive Least Squares Generative Adversarial Network,CN-
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112731327A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112731327A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112731327A3</originalsourceid><addsrcrecordid>eNrjZHD3CAoKUChKTEksUihJLEpPLVHITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPKd_XR9gt0d_XQUgkPcQhQS81KAQn48DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0Mjc2NDYyNzRmBg1ADTCMQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HRRP radar target identification method based on CN-LSGAN, STFT and CNN</title><source>esp@cenet</source><creator>HUANG LIZHEN ; NIE JIANGHUA ; LIU YUE ; XIAO YONGSHENG ; RAO XUAN ; LIU YUFAN ; QIU XIN ; HE FENGSHOU</creator><creatorcontrib>HUANG LIZHEN ; NIE JIANGHUA ; LIU YUE ; XIAO YONGSHENG ; RAO XUAN ; LIU YUFAN ; QIU XIN ; HE FENGSHOU</creatorcontrib><description>The invention discloses an HRRP radar target identification method based on a constrained naive least squares generative adversarial network (CN-LSGAN), a short-time Fourier transform (STFT) and a convolutional neural network (CNN). The method comprises the following steps that S1, the CN-LSGAN is used for denoising HRRP data, the network is combined with the characteristics of a least squares generative adversarial network (LSGAN) and Wasserstein generative adversarial nets-gradient penalty (WGAN-GP), and the noisy HRRP data pass through the CN-LSGAN to generate data similar to clean HRRP data to realize data enhancement; S2, time-frequency analysis is carried out on the HRRP data by adopting STFT, and frequency domain and phase features of a target are introduced so as to facilitate feature learning; and S3, target identification is carried out on the data obtained by the time-frequency analysis through the CNN. 本发明专利公开了提出了一种基于约束朴素最小二乘生成对抗网络(Constrained Naive Least Squares Generative Adversarial Network,CN-</description><language>chi ; eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210430&amp;DB=EPODOC&amp;CC=CN&amp;NR=112731327A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210430&amp;DB=EPODOC&amp;CC=CN&amp;NR=112731327A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG LIZHEN</creatorcontrib><creatorcontrib>NIE JIANGHUA</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>XIAO YONGSHENG</creatorcontrib><creatorcontrib>RAO XUAN</creatorcontrib><creatorcontrib>LIU YUFAN</creatorcontrib><creatorcontrib>QIU XIN</creatorcontrib><creatorcontrib>HE FENGSHOU</creatorcontrib><title>HRRP radar target identification method based on CN-LSGAN, STFT and CNN</title><description>The invention discloses an HRRP radar target identification method based on a constrained naive least squares generative adversarial network (CN-LSGAN), a short-time Fourier transform (STFT) and a convolutional neural network (CNN). The method comprises the following steps that S1, the CN-LSGAN is used for denoising HRRP data, the network is combined with the characteristics of a least squares generative adversarial network (LSGAN) and Wasserstein generative adversarial nets-gradient penalty (WGAN-GP), and the noisy HRRP data pass through the CN-LSGAN to generate data similar to clean HRRP data to realize data enhancement; S2, time-frequency analysis is carried out on the HRRP data by adopting STFT, and frequency domain and phase features of a target are introduced so as to facilitate feature learning; and S3, target identification is carried out on the data obtained by the time-frequency analysis through the CNN. 本发明专利公开了提出了一种基于约束朴素最小二乘生成对抗网络(Constrained Naive Least Squares Generative Adversarial Network,CN-</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3CAoKUChKTEksUihJLEpPLVHITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPKd_XR9gt0d_XQUgkPcQhQS81KAQn48DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0Mjc2NDYyNzRmBg1ADTCMQo</recordid><startdate>20210430</startdate><enddate>20210430</enddate><creator>HUANG LIZHEN</creator><creator>NIE JIANGHUA</creator><creator>LIU YUE</creator><creator>XIAO YONGSHENG</creator><creator>RAO XUAN</creator><creator>LIU YUFAN</creator><creator>QIU XIN</creator><creator>HE FENGSHOU</creator><scope>EVB</scope></search><sort><creationdate>20210430</creationdate><title>HRRP radar target identification method based on CN-LSGAN, STFT and CNN</title><author>HUANG LIZHEN ; NIE JIANGHUA ; LIU YUE ; XIAO YONGSHENG ; RAO XUAN ; LIU YUFAN ; QIU XIN ; HE FENGSHOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112731327A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG LIZHEN</creatorcontrib><creatorcontrib>NIE JIANGHUA</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>XIAO YONGSHENG</creatorcontrib><creatorcontrib>RAO XUAN</creatorcontrib><creatorcontrib>LIU YUFAN</creatorcontrib><creatorcontrib>QIU XIN</creatorcontrib><creatorcontrib>HE FENGSHOU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG LIZHEN</au><au>NIE JIANGHUA</au><au>LIU YUE</au><au>XIAO YONGSHENG</au><au>RAO XUAN</au><au>LIU YUFAN</au><au>QIU XIN</au><au>HE FENGSHOU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HRRP radar target identification method based on CN-LSGAN, STFT and CNN</title><date>2021-04-30</date><risdate>2021</risdate><abstract>The invention discloses an HRRP radar target identification method based on a constrained naive least squares generative adversarial network (CN-LSGAN), a short-time Fourier transform (STFT) and a convolutional neural network (CNN). The method comprises the following steps that S1, the CN-LSGAN is used for denoising HRRP data, the network is combined with the characteristics of a least squares generative adversarial network (LSGAN) and Wasserstein generative adversarial nets-gradient penalty (WGAN-GP), and the noisy HRRP data pass through the CN-LSGAN to generate data similar to clean HRRP data to realize data enhancement; S2, time-frequency analysis is carried out on the HRRP data by adopting STFT, and frequency domain and phase features of a target are introduced so as to facilitate feature learning; and S3, target identification is carried out on the data obtained by the time-frequency analysis through the CNN. 本发明专利公开了提出了一种基于约束朴素最小二乘生成对抗网络(Constrained Naive Least Squares Generative Adversarial Network,CN-</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112731327A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
TESTING
title HRRP radar target identification method based on CN-LSGAN, STFT and CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20LIZHEN&rft.date=2021-04-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112731327A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true