Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning

The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA TENGTENG, GU ZHENWEI, WANG ZIJUN, ZHOU AN, TANG YI, MEI FAMAO, HUANG HAO, YU ZHIWEN, WU QINQIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA TENGTENG
GU ZHENWEI
WANG ZIJUN
ZHOU AN
TANG YI
MEI FAMAO
HUANG HAO
YU ZHIWEN
WU QINQIN
description The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112701681A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112701681A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112701681A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIRkHdSlFciQv3ZUwmaSCdlMkU6e0t6AFcPT7v8-aVPvKbBIJEB2htdMSKCTwOSaGgJx1BKAwJNWYGZAc2s0pOUFRQKYwQiEm-viNts4MXFnIwbaHIPoulbupCIhSOHJbVzGMqtPpxUa2vl2d921CfGyo92qmoTX03ZnfcmsPJnPf_fD7xv0Wf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><source>esp@cenet</source><creator>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</creator><creatorcontrib>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</creatorcontrib><description>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</description><language>chi ; eng</language><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; ELECTRICITY ; GENERATION ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210423&amp;DB=EPODOC&amp;CC=CN&amp;NR=112701681A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210423&amp;DB=EPODOC&amp;CC=CN&amp;NR=112701681A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA TENGTENG</creatorcontrib><creatorcontrib>GU ZHENWEI</creatorcontrib><creatorcontrib>WANG ZIJUN</creatorcontrib><creatorcontrib>ZHOU AN</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>MEI FAMAO</creatorcontrib><creatorcontrib>HUANG HAO</creatorcontrib><creatorcontrib>YU ZHIWEN</creatorcontrib><creatorcontrib>WU QINQIN</creatorcontrib><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><description>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</description><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIRkHdSlFciQv3ZUwmaSCdlMkU6e0t6AFcPT7v8-aVPvKbBIJEB2htdMSKCTwOSaGgJx1BKAwJNWYGZAc2s0pOUFRQKYwQiEm-viNts4MXFnIwbaHIPoulbupCIhSOHJbVzGMqtPpxUa2vl2d921CfGyo92qmoTX03ZnfcmsPJnPf_fD7xv0Wf</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>MA TENGTENG</creator><creator>GU ZHENWEI</creator><creator>WANG ZIJUN</creator><creator>ZHOU AN</creator><creator>TANG YI</creator><creator>MEI FAMAO</creator><creator>HUANG HAO</creator><creator>YU ZHIWEN</creator><creator>WU QINQIN</creator><scope>EVB</scope></search><sort><creationdate>20210423</creationdate><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><author>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112701681A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>MA TENGTENG</creatorcontrib><creatorcontrib>GU ZHENWEI</creatorcontrib><creatorcontrib>WANG ZIJUN</creatorcontrib><creatorcontrib>ZHOU AN</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>MEI FAMAO</creatorcontrib><creatorcontrib>HUANG HAO</creatorcontrib><creatorcontrib>YU ZHIWEN</creatorcontrib><creatorcontrib>WU QINQIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA TENGTENG</au><au>GU ZHENWEI</au><au>WANG ZIJUN</au><au>ZHOU AN</au><au>TANG YI</au><au>MEI FAMAO</au><au>HUANG HAO</au><au>YU ZHIWEN</au><au>WU QINQIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><date>2021-04-23</date><risdate>2021</risdate><abstract>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112701681A
source esp@cenet
subjects CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
ELECTRICITY
GENERATION
SYSTEMS FOR STORING ELECTRIC ENERGY
title Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20TENGTENG&rft.date=2021-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112701681A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true