Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning
The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represen...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA TENGTENG GU ZHENWEI WANG ZIJUN ZHOU AN TANG YI MEI FAMAO HUANG HAO YU ZHIWEN WU QINQIN |
description | The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112701681A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112701681A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112701681A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMIRkHdSlFciQv3ZUwmaSCdlMkU6e0t6AFcPT7v8-aVPvKbBIJEB2htdMSKCTwOSaGgJx1BKAwJNWYGZAc2s0pOUFRQKYwQiEm-viNts4MXFnIwbaHIPoulbupCIhSOHJbVzGMqtPpxUa2vl2d921CfGyo92qmoTX03ZnfcmsPJnPf_fD7xv0Wf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><source>esp@cenet</source><creator>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</creator><creatorcontrib>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</creatorcontrib><description>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</description><language>chi ; eng</language><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; ELECTRICITY ; GENERATION ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210423&DB=EPODOC&CC=CN&NR=112701681A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210423&DB=EPODOC&CC=CN&NR=112701681A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA TENGTENG</creatorcontrib><creatorcontrib>GU ZHENWEI</creatorcontrib><creatorcontrib>WANG ZIJUN</creatorcontrib><creatorcontrib>ZHOU AN</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>MEI FAMAO</creatorcontrib><creatorcontrib>HUANG HAO</creatorcontrib><creatorcontrib>YU ZHIWEN</creatorcontrib><creatorcontrib>WU QINQIN</creatorcontrib><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><description>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</description><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMIRkHdSlFciQv3ZUwmaSCdlMkU6e0t6AFcPT7v8-aVPvKbBIJEB2htdMSKCTwOSaGgJx1BKAwJNWYGZAc2s0pOUFRQKYwQiEm-viNts4MXFnIwbaHIPoulbupCIhSOHJbVzGMqtPpxUa2vl2d921CfGyo92qmoTX03ZnfcmsPJnPf_fD7xv0Wf</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>MA TENGTENG</creator><creator>GU ZHENWEI</creator><creator>WANG ZIJUN</creator><creator>ZHOU AN</creator><creator>TANG YI</creator><creator>MEI FAMAO</creator><creator>HUANG HAO</creator><creator>YU ZHIWEN</creator><creator>WU QINQIN</creator><scope>EVB</scope></search><sort><creationdate>20210423</creationdate><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><author>MA TENGTENG ; GU ZHENWEI ; WANG ZIJUN ; ZHOU AN ; TANG YI ; MEI FAMAO ; HUANG HAO ; YU ZHIWEN ; WU QINQIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112701681A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>MA TENGTENG</creatorcontrib><creatorcontrib>GU ZHENWEI</creatorcontrib><creatorcontrib>WANG ZIJUN</creatorcontrib><creatorcontrib>ZHOU AN</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>MEI FAMAO</creatorcontrib><creatorcontrib>HUANG HAO</creatorcontrib><creatorcontrib>YU ZHIWEN</creatorcontrib><creatorcontrib>WU QINQIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA TENGTENG</au><au>GU ZHENWEI</au><au>WANG ZIJUN</au><au>ZHOU AN</au><au>TANG YI</au><au>MEI FAMAO</au><au>HUANG HAO</au><au>YU ZHIWEN</au><au>WU QINQIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning</title><date>2021-04-23</date><risdate>2021</risdate><abstract>The invention discloses a power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning. The method comprises the steps that a semi-physical simulation model of an actual power grid is built; a power grid regulation and control strategy represented by a neural network is generated by utilizing a large amount of historical operation data of an actual power grid, historical data is supplemented by artificially generating a security threat, and the power grid regulation and control strategy is optimized by utilizing reinforcement learning; and aiming at accidental faults of an actual power grid, the digital simulation platform senses the faults in time, and then generates regulation and control behaviors are generated by using a trained power grid regulation and control strategy. A complex power grid safety regulation and control problem is converted into a power grid regulation and control strategy expressed by a neural network, when a new safety threat occ</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112701681A |
source | esp@cenet |
subjects | CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ELECTRICITY GENERATION SYSTEMS FOR STORING ELECTRIC ENERGY |
title | Power grid accidental fault safety regulation and control strategy generation method based on reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20TENGTENG&rft.date=2021-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112701681A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |