Mechanism and data hybrid driven generative adversarial network soft measurement modeling method

A mechanism and data hybrid driven generative adversarial network soft measurement modeling method comprises the following steps: sampling from an auxiliary variable to obtain data q, sampling from random noise to obtain data z, inputting q and z into a to-be-identified generator composed of a mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO RUNYUAN, LIU HAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO RUNYUAN
LIU HAN
description A mechanism and data hybrid driven generative adversarial network soft measurement modeling method comprises the following steps: sampling from an auxiliary variable to obtain data q, sampling from random noise to obtain data z, inputting q and z into a to-be-identified generator composed of a mechanism model and a data driven error compensation model to obtain a generated sample, inputting the generated sample and a real sample x into a discriminator, and performing back propagation on the obtained loss to obtain an optimal generator parameter; taking out the optimal generator as a trained soft measurement model, analyzing the interpretability of the model by using a latent variable manipulation method, and analyzing the prediction performance of the model by comparing with a single-drive soft measurement model; the method overcomes the limitations that a static model cannot capture dynamic characteristics among data, a mechanism-driven soft measurement model has modeling errors, data-driven soft measurement
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112668196A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112668196A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112668196A3</originalsourceid><addsrcrecordid>eNqNzDEOgkAUBFAaC6Pe4XsACzQhWhKisdHKHr_swG6Ev-TvivH2buEBrOZlMpl5dr-gsSwuDMRiyHBksp-HumR1E4Q6CJRjMrGZoIHVcU-C-Pb6pODbSAM4vBQDJNkb9E66VEbrzTKbtdwHrH65yNan4606bzD6GmHkJv3Hurrm-bYo9vmhKHf_bL4Tdz4X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mechanism and data hybrid driven generative adversarial network soft measurement modeling method</title><source>esp@cenet</source><creator>GUO RUNYUAN ; LIU HAN</creator><creatorcontrib>GUO RUNYUAN ; LIU HAN</creatorcontrib><description>A mechanism and data hybrid driven generative adversarial network soft measurement modeling method comprises the following steps: sampling from an auxiliary variable to obtain data q, sampling from random noise to obtain data z, inputting q and z into a to-be-identified generator composed of a mechanism model and a data driven error compensation model to obtain a generated sample, inputting the generated sample and a real sample x into a discriminator, and performing back propagation on the obtained loss to obtain an optimal generator parameter; taking out the optimal generator as a trained soft measurement model, analyzing the interpretability of the model by using a latent variable manipulation method, and analyzing the prediction performance of the model by comparing with a single-drive soft measurement model; the method overcomes the limitations that a static model cannot capture dynamic characteristics among data, a mechanism-driven soft measurement model has modeling errors, data-driven soft measurement</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112668196A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112668196A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO RUNYUAN</creatorcontrib><creatorcontrib>LIU HAN</creatorcontrib><title>Mechanism and data hybrid driven generative adversarial network soft measurement modeling method</title><description>A mechanism and data hybrid driven generative adversarial network soft measurement modeling method comprises the following steps: sampling from an auxiliary variable to obtain data q, sampling from random noise to obtain data z, inputting q and z into a to-be-identified generator composed of a mechanism model and a data driven error compensation model to obtain a generated sample, inputting the generated sample and a real sample x into a discriminator, and performing back propagation on the obtained loss to obtain an optimal generator parameter; taking out the optimal generator as a trained soft measurement model, analyzing the interpretability of the model by using a latent variable manipulation method, and analyzing the prediction performance of the model by comparing with a single-drive soft measurement model; the method overcomes the limitations that a static model cannot capture dynamic characteristics among data, a mechanism-driven soft measurement model has modeling errors, data-driven soft measurement</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEOgkAUBFAaC6Pe4XsACzQhWhKisdHKHr_swG6Ev-TvivH2buEBrOZlMpl5dr-gsSwuDMRiyHBksp-HumR1E4Q6CJRjMrGZoIHVcU-C-Pb6pODbSAM4vBQDJNkb9E66VEbrzTKbtdwHrH65yNan4606bzD6GmHkJv3Hurrm-bYo9vmhKHf_bL4Tdz4X</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>GUO RUNYUAN</creator><creator>LIU HAN</creator><scope>EVB</scope></search><sort><creationdate>20210416</creationdate><title>Mechanism and data hybrid driven generative adversarial network soft measurement modeling method</title><author>GUO RUNYUAN ; LIU HAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112668196A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO RUNYUAN</creatorcontrib><creatorcontrib>LIU HAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO RUNYUAN</au><au>LIU HAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mechanism and data hybrid driven generative adversarial network soft measurement modeling method</title><date>2021-04-16</date><risdate>2021</risdate><abstract>A mechanism and data hybrid driven generative adversarial network soft measurement modeling method comprises the following steps: sampling from an auxiliary variable to obtain data q, sampling from random noise to obtain data z, inputting q and z into a to-be-identified generator composed of a mechanism model and a data driven error compensation model to obtain a generated sample, inputting the generated sample and a real sample x into a discriminator, and performing back propagation on the obtained loss to obtain an optimal generator parameter; taking out the optimal generator as a trained soft measurement model, analyzing the interpretability of the model by using a latent variable manipulation method, and analyzing the prediction performance of the model by comparing with a single-drive soft measurement model; the method overcomes the limitations that a static model cannot capture dynamic characteristics among data, a mechanism-driven soft measurement model has modeling errors, data-driven soft measurement</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112668196A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Mechanism and data hybrid driven generative adversarial network soft measurement modeling method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20RUNYUAN&rft.date=2021-04-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112668196A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true