User comment emotion analysis method and system fusing GCN and multi-granularity attention

The invention relates to a user comment emotion analysis method fusing GCN and multi-granularity attention, and the method comprises the following steps: A, extracting user comments and aspect words of products or services related to the user comments, marking the emotion polarity of the user commen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN YUZHONG, WAN YUJIE, ZHUANG TIANHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN YUZHONG
WAN YUJIE
ZHUANG TIANHAO
description The invention relates to a user comment emotion analysis method fusing GCN and multi-granularity attention, and the method comprises the following steps: A, extracting user comments and aspect words of products or services related to the user comments, marking the emotion polarity of the user comments for the specific aspects of the products or services, and constructing a training set SA; B, training a GCN and multi-granularity attention fused deep learning network model G by using the training set SA, so as to analyze the emotional notation of user comments on specific aspects of products or services; and C, inputting the user comments and aspect words of products or services related to the user comments into the trained deep learning network model G to obtain emotion polarities of the user comments on specific aspects of the products or the services. The emotion classification accuracy can be effectively improved. 本发明涉及一种融合GCN与多粒度注意力的用户评论情感分析方法,包括以下步骤:步骤A:提取用户评论、用户评论涉及的产品或服务的方面词,并标注用户评论针对产品或服务的的特定方面的情感极性,构
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112667818A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112667818A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112667818A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywFSGKSQFll8qlTQ0ESrZBMs-RN514Vvj4U4ANXojZ5mXb2eTBGG4Bx5AXJBTPCAHm1mw-BI3mEsewTOLORgSmz8DDfdfa1LVkw9R_TJYjSSAUVKqlS21WpCy7T7cVPtr5eHvte0hJ54wYE8Sa87pQ5Nc2pVez7-8_kATTU7cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>User comment emotion analysis method and system fusing GCN and multi-granularity attention</title><source>esp@cenet</source><creator>CHEN YUZHONG ; WAN YUJIE ; ZHUANG TIANHAO</creator><creatorcontrib>CHEN YUZHONG ; WAN YUJIE ; ZHUANG TIANHAO</creatorcontrib><description>The invention relates to a user comment emotion analysis method fusing GCN and multi-granularity attention, and the method comprises the following steps: A, extracting user comments and aspect words of products or services related to the user comments, marking the emotion polarity of the user comments for the specific aspects of the products or services, and constructing a training set SA; B, training a GCN and multi-granularity attention fused deep learning network model G by using the training set SA, so as to analyze the emotional notation of user comments on specific aspects of products or services; and C, inputting the user comments and aspect words of products or services related to the user comments into the trained deep learning network model G to obtain emotion polarities of the user comments on specific aspects of the products or the services. The emotion classification accuracy can be effectively improved. 本发明涉及一种融合GCN与多粒度注意力的用户评论情感分析方法,包括以下步骤:步骤A:提取用户评论、用户评论涉及的产品或服务的方面词,并标注用户评论针对产品或服务的的特定方面的情感极性,构</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112667818A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210416&amp;DB=EPODOC&amp;CC=CN&amp;NR=112667818A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YUZHONG</creatorcontrib><creatorcontrib>WAN YUJIE</creatorcontrib><creatorcontrib>ZHUANG TIANHAO</creatorcontrib><title>User comment emotion analysis method and system fusing GCN and multi-granularity attention</title><description>The invention relates to a user comment emotion analysis method fusing GCN and multi-granularity attention, and the method comprises the following steps: A, extracting user comments and aspect words of products or services related to the user comments, marking the emotion polarity of the user comments for the specific aspects of the products or services, and constructing a training set SA; B, training a GCN and multi-granularity attention fused deep learning network model G by using the training set SA, so as to analyze the emotional notation of user comments on specific aspects of products or services; and C, inputting the user comments and aspect words of products or services related to the user comments into the trained deep learning network model G to obtain emotion polarities of the user comments on specific aspects of the products or the services. The emotion classification accuracy can be effectively improved. 本发明涉及一种融合GCN与多粒度注意力的用户评论情感分析方法,包括以下步骤:步骤A:提取用户评论、用户评论涉及的产品或服务的方面词,并标注用户评论针对产品或服务的的特定方面的情感极性,构</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywFSGKSQFll8qlTQ0ESrZBMs-RN514Vvj4U4ANXojZ5mXb2eTBGG4Bx5AXJBTPCAHm1mw-BI3mEsewTOLORgSmz8DDfdfa1LVkw9R_TJYjSSAUVKqlS21WpCy7T7cVPtr5eHvte0hJ54wYE8Sa87pQ5Nc2pVez7-8_kATTU7cg</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>CHEN YUZHONG</creator><creator>WAN YUJIE</creator><creator>ZHUANG TIANHAO</creator><scope>EVB</scope></search><sort><creationdate>20210416</creationdate><title>User comment emotion analysis method and system fusing GCN and multi-granularity attention</title><author>CHEN YUZHONG ; WAN YUJIE ; ZHUANG TIANHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112667818A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YUZHONG</creatorcontrib><creatorcontrib>WAN YUJIE</creatorcontrib><creatorcontrib>ZHUANG TIANHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YUZHONG</au><au>WAN YUJIE</au><au>ZHUANG TIANHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>User comment emotion analysis method and system fusing GCN and multi-granularity attention</title><date>2021-04-16</date><risdate>2021</risdate><abstract>The invention relates to a user comment emotion analysis method fusing GCN and multi-granularity attention, and the method comprises the following steps: A, extracting user comments and aspect words of products or services related to the user comments, marking the emotion polarity of the user comments for the specific aspects of the products or services, and constructing a training set SA; B, training a GCN and multi-granularity attention fused deep learning network model G by using the training set SA, so as to analyze the emotional notation of user comments on specific aspects of products or services; and C, inputting the user comments and aspect words of products or services related to the user comments into the trained deep learning network model G to obtain emotion polarities of the user comments on specific aspects of the products or the services. The emotion classification accuracy can be effectively improved. 本发明涉及一种融合GCN与多粒度注意力的用户评论情感分析方法,包括以下步骤:步骤A:提取用户评论、用户评论涉及的产品或服务的方面词,并标注用户评论针对产品或服务的的特定方面的情感极性,构</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112667818A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title User comment emotion analysis method and system fusing GCN and multi-granularity attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YUZHONG&rft.date=2021-04-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112667818A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true