Target detection method based on deep learning

The invention discloses a target detection method based on deep learning. The method comprises the following steps: determining a target area to be detected; inputting the target area into a detection network pre-trained based on deep learning, and carrying out forward propagation to obtain the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG XUAN, CAI QING, ZHENG QIANG, YAN WEIQING, MA CHAOQING, LYU JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG XUAN
CAI QING
ZHENG QIANG
YAN WEIQING
MA CHAOQING
LYU JUN
description The invention discloses a target detection method based on deep learning. The method comprises the following steps: determining a target area to be detected; inputting the target area into a detection network pre-trained based on deep learning, and carrying out forward propagation to obtain the first qualified probability; carrying out cutting operation on the target area to obtain a plurality of point locations. After a target area to be detected is determined, the target area can be input into a detection network based on deep learning pre-detection to carry out front-position transmission, obtain a first qualified probability, determine a key area of a target picture, and input the key target area into the detection network based on deep learning pre-detection to carry out front-position transmission, the second qualification probability is obtained, whether the target detection area is qualified or not is determined according to the first qualification probability and the second qualification probability,
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112651964A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112651964A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112651964A3</originalsourceid><addsrcrecordid>eNrjZNALSSxKTy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoZGZqaGlmYmjMTFqAN8ZKkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target detection method based on deep learning</title><source>esp@cenet</source><creator>WANG XUAN ; CAI QING ; ZHENG QIANG ; YAN WEIQING ; MA CHAOQING ; LYU JUN</creator><creatorcontrib>WANG XUAN ; CAI QING ; ZHENG QIANG ; YAN WEIQING ; MA CHAOQING ; LYU JUN</creatorcontrib><description>The invention discloses a target detection method based on deep learning. The method comprises the following steps: determining a target area to be detected; inputting the target area into a detection network pre-trained based on deep learning, and carrying out forward propagation to obtain the first qualified probability; carrying out cutting operation on the target area to obtain a plurality of point locations. After a target area to be detected is determined, the target area can be input into a detection network based on deep learning pre-detection to carry out front-position transmission, obtain a first qualified probability, determine a key area of a target picture, and input the key target area into the detection network based on deep learning pre-detection to carry out front-position transmission, the second qualification probability is obtained, whether the target detection area is qualified or not is determined according to the first qualification probability and the second qualification probability,</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210413&amp;DB=EPODOC&amp;CC=CN&amp;NR=112651964A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210413&amp;DB=EPODOC&amp;CC=CN&amp;NR=112651964A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XUAN</creatorcontrib><creatorcontrib>CAI QING</creatorcontrib><creatorcontrib>ZHENG QIANG</creatorcontrib><creatorcontrib>YAN WEIQING</creatorcontrib><creatorcontrib>MA CHAOQING</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><title>Target detection method based on deep learning</title><description>The invention discloses a target detection method based on deep learning. The method comprises the following steps: determining a target area to be detected; inputting the target area into a detection network pre-trained based on deep learning, and carrying out forward propagation to obtain the first qualified probability; carrying out cutting operation on the target area to obtain a plurality of point locations. After a target area to be detected is determined, the target area can be input into a detection network based on deep learning pre-detection to carry out front-position transmission, obtain a first qualified probability, determine a key area of a target picture, and input the key target area into the detection network based on deep learning pre-detection to carry out front-position transmission, the second qualification probability is obtained, whether the target detection area is qualified or not is determined according to the first qualification probability and the second qualification probability,</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALSSxKTy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8lNSUwsUclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoZGZqaGlmYmjMTFqAN8ZKkw</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>WANG XUAN</creator><creator>CAI QING</creator><creator>ZHENG QIANG</creator><creator>YAN WEIQING</creator><creator>MA CHAOQING</creator><creator>LYU JUN</creator><scope>EVB</scope></search><sort><creationdate>20210413</creationdate><title>Target detection method based on deep learning</title><author>WANG XUAN ; CAI QING ; ZHENG QIANG ; YAN WEIQING ; MA CHAOQING ; LYU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112651964A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XUAN</creatorcontrib><creatorcontrib>CAI QING</creatorcontrib><creatorcontrib>ZHENG QIANG</creatorcontrib><creatorcontrib>YAN WEIQING</creatorcontrib><creatorcontrib>MA CHAOQING</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XUAN</au><au>CAI QING</au><au>ZHENG QIANG</au><au>YAN WEIQING</au><au>MA CHAOQING</au><au>LYU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target detection method based on deep learning</title><date>2021-04-13</date><risdate>2021</risdate><abstract>The invention discloses a target detection method based on deep learning. The method comprises the following steps: determining a target area to be detected; inputting the target area into a detection network pre-trained based on deep learning, and carrying out forward propagation to obtain the first qualified probability; carrying out cutting operation on the target area to obtain a plurality of point locations. After a target area to be detected is determined, the target area can be input into a detection network based on deep learning pre-detection to carry out front-position transmission, obtain a first qualified probability, determine a key area of a target picture, and input the key target area into the detection network based on deep learning pre-detection to carry out front-position transmission, the second qualification probability is obtained, whether the target detection area is qualified or not is determined according to the first qualification probability and the second qualification probability,</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112651964A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Target detection method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XUAN&rft.date=2021-04-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112651964A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true