Cross-modal image aesthetics quality evaluation method based on knowledge distillation

The invention relates to a cross-modal image aesthetic quality evaluation method based on knowledge distillation. The method comprises the following steps of: S1, designing a teacher network for image-text multi-modal aesthetic quality evaluation; S2, designing a student network for image aesthetics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU WENXI, GAN WEIZE, NIU YUZHEN, CHEN ZHIXIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU WENXI
GAN WEIZE
NIU YUZHEN
CHEN ZHIXIAN
description The invention relates to a cross-modal image aesthetic quality evaluation method based on knowledge distillation. The method comprises the following steps of: S1, designing a teacher network for image-text multi-modal aesthetic quality evaluation; S2, designing a student network for image aesthetics quality evaluation; S3, designing a discriminator network for adversarial training; S4, designing a loss function for training the teacher network and the student network; S5, training the networks designed in the steps S1, S2 and S3 by using the loss function; S6, inputting an image for testing into the trained student network to predict the aesthetic quality of the student network. The method provided by the invention can significantly improve the aesthetic quality prediction precision. 本发明涉及一种基于知识蒸馏的跨模态图像美学质量评价方法。包括以下步骤:S1:设计图文多模态美学质量评价的教师网络;S2:设计用于图像美学质量评价的学生网络;S3:设计用于进行对抗训练的判别器网络;S4:设计用于训练教师网络和学生网络的损失函数;S5:使用损失函数对步骤S1、S2及S3所设计网络进行训练;S6:将用于测试的图像输入训练好的学生网络预测其美学质量。本发明方法能显著提高美学质量预测精度。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112613303A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112613303A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112613303A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHPxIOof1gcUjAHvEhRPnsRrWZvVhm6S6m4Vf28RH-BpGJiZmrN_FJEqlYAMMeGNAEm0JY2NwH1AjvoGeiIPqLFkSKRtCXBBoQCjd7m8mML4hSgamb_Z3EyuyEKLH2dmud-d_KGivtQkPTaUSWt_tHa9sc6t3Nb903wAa0o6Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-modal image aesthetics quality evaluation method based on knowledge distillation</title><source>esp@cenet</source><creator>LIU WENXI ; GAN WEIZE ; NIU YUZHEN ; CHEN ZHIXIAN</creator><creatorcontrib>LIU WENXI ; GAN WEIZE ; NIU YUZHEN ; CHEN ZHIXIAN</creatorcontrib><description>The invention relates to a cross-modal image aesthetic quality evaluation method based on knowledge distillation. The method comprises the following steps of: S1, designing a teacher network for image-text multi-modal aesthetic quality evaluation; S2, designing a student network for image aesthetics quality evaluation; S3, designing a discriminator network for adversarial training; S4, designing a loss function for training the teacher network and the student network; S5, training the networks designed in the steps S1, S2 and S3 by using the loss function; S6, inputting an image for testing into the trained student network to predict the aesthetic quality of the student network. The method provided by the invention can significantly improve the aesthetic quality prediction precision. 本发明涉及一种基于知识蒸馏的跨模态图像美学质量评价方法。包括以下步骤:S1:设计图文多模态美学质量评价的教师网络;S2:设计用于图像美学质量评价的学生网络;S3:设计用于进行对抗训练的判别器网络;S4:设计用于训练教师网络和学生网络的损失函数;S5:使用损失函数对步骤S1、S2及S3所设计网络进行训练;S6:将用于测试的图像输入训练好的学生网络预测其美学质量。本发明方法能显著提高美学质量预测精度。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210406&amp;DB=EPODOC&amp;CC=CN&amp;NR=112613303A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210406&amp;DB=EPODOC&amp;CC=CN&amp;NR=112613303A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU WENXI</creatorcontrib><creatorcontrib>GAN WEIZE</creatorcontrib><creatorcontrib>NIU YUZHEN</creatorcontrib><creatorcontrib>CHEN ZHIXIAN</creatorcontrib><title>Cross-modal image aesthetics quality evaluation method based on knowledge distillation</title><description>The invention relates to a cross-modal image aesthetic quality evaluation method based on knowledge distillation. The method comprises the following steps of: S1, designing a teacher network for image-text multi-modal aesthetic quality evaluation; S2, designing a student network for image aesthetics quality evaluation; S3, designing a discriminator network for adversarial training; S4, designing a loss function for training the teacher network and the student network; S5, training the networks designed in the steps S1, S2 and S3 by using the loss function; S6, inputting an image for testing into the trained student network to predict the aesthetic quality of the student network. The method provided by the invention can significantly improve the aesthetic quality prediction precision. 本发明涉及一种基于知识蒸馏的跨模态图像美学质量评价方法。包括以下步骤:S1:设计图文多模态美学质量评价的教师网络;S2:设计用于图像美学质量评价的学生网络;S3:设计用于进行对抗训练的判别器网络;S4:设计用于训练教师网络和学生网络的损失函数;S5:使用损失函数对步骤S1、S2及S3所设计网络进行训练;S6:将用于测试的图像输入训练好的学生网络预测其美学质量。本发明方法能显著提高美学质量预测精度。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHPxIOof1gcUjAHvEhRPnsRrWZvVhm6S6m4Vf28RH-BpGJiZmrN_FJEqlYAMMeGNAEm0JY2NwH1AjvoGeiIPqLFkSKRtCXBBoQCjd7m8mML4hSgamb_Z3EyuyEKLH2dmud-d_KGivtQkPTaUSWt_tHa9sc6t3Nb903wAa0o6Jw</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>LIU WENXI</creator><creator>GAN WEIZE</creator><creator>NIU YUZHEN</creator><creator>CHEN ZHIXIAN</creator><scope>EVB</scope></search><sort><creationdate>20210406</creationdate><title>Cross-modal image aesthetics quality evaluation method based on knowledge distillation</title><author>LIU WENXI ; GAN WEIZE ; NIU YUZHEN ; CHEN ZHIXIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112613303A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU WENXI</creatorcontrib><creatorcontrib>GAN WEIZE</creatorcontrib><creatorcontrib>NIU YUZHEN</creatorcontrib><creatorcontrib>CHEN ZHIXIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU WENXI</au><au>GAN WEIZE</au><au>NIU YUZHEN</au><au>CHEN ZHIXIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-modal image aesthetics quality evaluation method based on knowledge distillation</title><date>2021-04-06</date><risdate>2021</risdate><abstract>The invention relates to a cross-modal image aesthetic quality evaluation method based on knowledge distillation. The method comprises the following steps of: S1, designing a teacher network for image-text multi-modal aesthetic quality evaluation; S2, designing a student network for image aesthetics quality evaluation; S3, designing a discriminator network for adversarial training; S4, designing a loss function for training the teacher network and the student network; S5, training the networks designed in the steps S1, S2 and S3 by using the loss function; S6, inputting an image for testing into the trained student network to predict the aesthetic quality of the student network. The method provided by the invention can significantly improve the aesthetic quality prediction precision. 本发明涉及一种基于知识蒸馏的跨模态图像美学质量评价方法。包括以下步骤:S1:设计图文多模态美学质量评价的教师网络;S2:设计用于图像美学质量评价的学生网络;S3:设计用于进行对抗训练的判别器网络;S4:设计用于训练教师网络和学生网络的损失函数;S5:使用损失函数对步骤S1、S2及S3所设计网络进行训练;S6:将用于测试的图像输入训练好的学生网络预测其美学质量。本发明方法能显著提高美学质量预测精度。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112613303A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Cross-modal image aesthetics quality evaluation method based on knowledge distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20WENXI&rft.date=2021-04-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112613303A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true