Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board

The invention relates to a real-time medicine box detection method based on a YOLOv3 pruning network and an embedded development board. The method comprises the following steps: step 1, designing a YOLOv3 backbone network and a loss function; 2, collecting image data of the medicine boxes of all bra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: OU LINLIN, YU XINYI, RONG JINTAO, CAO MINGZHOU, ZHANG MINGYANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator OU LINLIN
YU XINYI
RONG JINTAO
CAO MINGZHOU
ZHANG MINGYANG
description The invention relates to a real-time medicine box detection method based on a YOLOv3 pruning network and an embedded development board. The method comprises the following steps: step 1, designing a YOLOv3 backbone network and a loss function; 2, collecting image data of the medicine boxes of all brands in a manual shooting mode; 3, making a medicine box data set and performing training; 4, performing model compression and acceleration calculation on the YOLOv3 through a pruning method based on a BN layer scaling factor gamma; 5, deploying the YOLOv3 compression model to a Nano embedded system,and carrying out model reasoning acceleration by using TensorRT; and step 6, carrying out real-time medicine box detection on the Nano by using a CSI camera. The invention is used for being deployedon an NVIDIA Jetson Nano embedded development board to carry out real-time medicine box detection, and the real-time performance of detection and the high efficiency of model operation are ensured while the detection precision
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112597919A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112597919A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112597919A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbs4iPoPzw_oUItIx1IUB7EgLk4l7bvVYPMSmlj9fDP4AU6XczmcedJfoIY0aAMyYN1pAbX2Q4yALmgr8Q4Py9QqD6bIt_pUTzm58SVa7iQIbzs-SQkTTAvmqDEmDNYZSIg1NfIymfVq8Fj9dpGsD_trdUzhbAPvVIcYaqpzlm22xa7IijL_x_kCDBI_CQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board</title><source>esp@cenet</source><creator>OU LINLIN ; YU XINYI ; RONG JINTAO ; CAO MINGZHOU ; ZHANG MINGYANG</creator><creatorcontrib>OU LINLIN ; YU XINYI ; RONG JINTAO ; CAO MINGZHOU ; ZHANG MINGYANG</creatorcontrib><description>The invention relates to a real-time medicine box detection method based on a YOLOv3 pruning network and an embedded development board. The method comprises the following steps: step 1, designing a YOLOv3 backbone network and a loss function; 2, collecting image data of the medicine boxes of all brands in a manual shooting mode; 3, making a medicine box data set and performing training; 4, performing model compression and acceleration calculation on the YOLOv3 through a pruning method based on a BN layer scaling factor gamma; 5, deploying the YOLOv3 compression model to a Nano embedded system,and carrying out model reasoning acceleration by using TensorRT; and step 6, carrying out real-time medicine box detection on the Nano by using a CSI camera. The invention is used for being deployedon an NVIDIA Jetson Nano embedded development board to carry out real-time medicine box detection, and the real-time performance of detection and the high efficiency of model operation are ensured while the detection precision</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210402&amp;DB=EPODOC&amp;CC=CN&amp;NR=112597919A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210402&amp;DB=EPODOC&amp;CC=CN&amp;NR=112597919A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>OU LINLIN</creatorcontrib><creatorcontrib>YU XINYI</creatorcontrib><creatorcontrib>RONG JINTAO</creatorcontrib><creatorcontrib>CAO MINGZHOU</creatorcontrib><creatorcontrib>ZHANG MINGYANG</creatorcontrib><title>Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board</title><description>The invention relates to a real-time medicine box detection method based on a YOLOv3 pruning network and an embedded development board. The method comprises the following steps: step 1, designing a YOLOv3 backbone network and a loss function; 2, collecting image data of the medicine boxes of all brands in a manual shooting mode; 3, making a medicine box data set and performing training; 4, performing model compression and acceleration calculation on the YOLOv3 through a pruning method based on a BN layer scaling factor gamma; 5, deploying the YOLOv3 compression model to a Nano embedded system,and carrying out model reasoning acceleration by using TensorRT; and step 6, carrying out real-time medicine box detection on the Nano by using a CSI camera. The invention is used for being deployedon an NVIDIA Jetson Nano embedded development board to carry out real-time medicine box detection, and the real-time performance of detection and the high efficiency of model operation are ensured while the detection precision</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbs4iPoPzw_oUItIx1IUB7EgLk4l7bvVYPMSmlj9fDP4AU6XczmcedJfoIY0aAMyYN1pAbX2Q4yALmgr8Q4Py9QqD6bIt_pUTzm58SVa7iQIbzs-SQkTTAvmqDEmDNYZSIg1NfIymfVq8Fj9dpGsD_trdUzhbAPvVIcYaqpzlm22xa7IijL_x_kCDBI_CQ</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>OU LINLIN</creator><creator>YU XINYI</creator><creator>RONG JINTAO</creator><creator>CAO MINGZHOU</creator><creator>ZHANG MINGYANG</creator><scope>EVB</scope></search><sort><creationdate>20210402</creationdate><title>Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board</title><author>OU LINLIN ; YU XINYI ; RONG JINTAO ; CAO MINGZHOU ; ZHANG MINGYANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112597919A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>OU LINLIN</creatorcontrib><creatorcontrib>YU XINYI</creatorcontrib><creatorcontrib>RONG JINTAO</creatorcontrib><creatorcontrib>CAO MINGZHOU</creatorcontrib><creatorcontrib>ZHANG MINGYANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>OU LINLIN</au><au>YU XINYI</au><au>RONG JINTAO</au><au>CAO MINGZHOU</au><au>ZHANG MINGYANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board</title><date>2021-04-02</date><risdate>2021</risdate><abstract>The invention relates to a real-time medicine box detection method based on a YOLOv3 pruning network and an embedded development board. The method comprises the following steps: step 1, designing a YOLOv3 backbone network and a loss function; 2, collecting image data of the medicine boxes of all brands in a manual shooting mode; 3, making a medicine box data set and performing training; 4, performing model compression and acceleration calculation on the YOLOv3 through a pruning method based on a BN layer scaling factor gamma; 5, deploying the YOLOv3 compression model to a Nano embedded system,and carrying out model reasoning acceleration by using TensorRT; and step 6, carrying out real-time medicine box detection on the Nano by using a CSI camera. The invention is used for being deployedon an NVIDIA Jetson Nano embedded development board to carry out real-time medicine box detection, and the real-time performance of detection and the high efficiency of model operation are ensured while the detection precision</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112597919A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Real-time medicine box detection method based on YOLOv3 pruning network and embedded development board
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=OU%20LINLIN&rft.date=2021-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112597919A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true