Rolling bearing fault diagnosis method based on 1D-CNN
The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, perfor...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PAN YUNA WEI TINGTING CHENG DAOLAI WANG YARU JI LINZHANG JIANG BO |
description | The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112577745A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112577745A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112577745A3</originalsourceid><addsrcrecordid>eNrjZDALys_JycxLV0hKTSwC0WmJpTklCimZiel5-cWZxQq5qSUZ-SkKSYnFqSkK-XkKhi66zn5-PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDI1Nzc3MTU0ZgYNQA2LCx1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><source>esp@cenet</source><creator>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</creator><creatorcontrib>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</creatorcontrib><description>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</description><language>chi ; eng</language><subject>MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210330&DB=EPODOC&CC=CN&NR=112577745A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210330&DB=EPODOC&CC=CN&NR=112577745A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PAN YUNA</creatorcontrib><creatorcontrib>WEI TINGTING</creatorcontrib><creatorcontrib>CHENG DAOLAI</creatorcontrib><creatorcontrib>WANG YARU</creatorcontrib><creatorcontrib>JI LINZHANG</creatorcontrib><creatorcontrib>JIANG BO</creatorcontrib><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><description>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</description><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALys_JycxLV0hKTSwC0WmJpTklCimZiel5-cWZxQq5qSUZ-SkKSYnFqSkK-XkKhi66zn5-PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDI1Nzc3MTU0ZgYNQA2LCx1</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>PAN YUNA</creator><creator>WEI TINGTING</creator><creator>CHENG DAOLAI</creator><creator>WANG YARU</creator><creator>JI LINZHANG</creator><creator>JIANG BO</creator><scope>EVB</scope></search><sort><creationdate>20210330</creationdate><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><author>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112577745A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>PAN YUNA</creatorcontrib><creatorcontrib>WEI TINGTING</creatorcontrib><creatorcontrib>CHENG DAOLAI</creatorcontrib><creatorcontrib>WANG YARU</creatorcontrib><creatorcontrib>JI LINZHANG</creatorcontrib><creatorcontrib>JIANG BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PAN YUNA</au><au>WEI TINGTING</au><au>CHENG DAOLAI</au><au>WANG YARU</au><au>JI LINZHANG</au><au>JIANG BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><date>2021-03-30</date><risdate>2021</risdate><abstract>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112577745A |
source | esp@cenet |
subjects | MEASURING PHYSICS TESTING TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR |
title | Rolling bearing fault diagnosis method based on 1D-CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PAN%20YUNA&rft.date=2021-03-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112577745A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |