Rolling bearing fault diagnosis method based on 1D-CNN

The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PAN YUNA, WEI TINGTING, CHENG DAOLAI, WANG YARU, JI LINZHANG, JIANG BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PAN YUNA
WEI TINGTING
CHENG DAOLAI
WANG YARU
JI LINZHANG
JIANG BO
description The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112577745A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112577745A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112577745A3</originalsourceid><addsrcrecordid>eNrjZDALys_JycxLV0hKTSwC0WmJpTklCimZiel5-cWZxQq5qSUZ-SkKSYnFqSkK-XkKhi66zn5-PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDI1Nzc3MTU0ZgYNQA2LCx1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><source>esp@cenet</source><creator>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</creator><creatorcontrib>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</creatorcontrib><description>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</description><language>chi ; eng</language><subject>MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210330&amp;DB=EPODOC&amp;CC=CN&amp;NR=112577745A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210330&amp;DB=EPODOC&amp;CC=CN&amp;NR=112577745A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PAN YUNA</creatorcontrib><creatorcontrib>WEI TINGTING</creatorcontrib><creatorcontrib>CHENG DAOLAI</creatorcontrib><creatorcontrib>WANG YARU</creatorcontrib><creatorcontrib>JI LINZHANG</creatorcontrib><creatorcontrib>JIANG BO</creatorcontrib><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><description>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</description><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDALys_JycxLV0hKTSwC0WmJpTklCimZiel5-cWZxQq5qSUZ-SkKSYnFqSkK-XkKhi66zn5-PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDI1Nzc3MTU0ZgYNQA2LCx1</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>PAN YUNA</creator><creator>WEI TINGTING</creator><creator>CHENG DAOLAI</creator><creator>WANG YARU</creator><creator>JI LINZHANG</creator><creator>JIANG BO</creator><scope>EVB</scope></search><sort><creationdate>20210330</creationdate><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><author>PAN YUNA ; WEI TINGTING ; CHENG DAOLAI ; WANG YARU ; JI LINZHANG ; JIANG BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112577745A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>PAN YUNA</creatorcontrib><creatorcontrib>WEI TINGTING</creatorcontrib><creatorcontrib>CHENG DAOLAI</creatorcontrib><creatorcontrib>WANG YARU</creatorcontrib><creatorcontrib>JI LINZHANG</creatorcontrib><creatorcontrib>JIANG BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PAN YUNA</au><au>WEI TINGTING</au><au>CHENG DAOLAI</au><au>WANG YARU</au><au>JI LINZHANG</au><au>JIANG BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rolling bearing fault diagnosis method based on 1D-CNN</title><date>2021-03-30</date><risdate>2021</risdate><abstract>The invention discloses a rolling bearing fault diagnosis method based on a 1D-CNN. The method comprises the following steps: S1, respectively obtaining an inner ring fault, an outer ring fault, a rolling body fault and vibration signal data in a normal state of rolling bearing equipment; S2, performing preprocessing operation on the vibration signal data, including intercepting the four types ofvibration signal data to obtain four types of samples required by the model, labeling the four types of samples respectively, and dividing the labeled samples into a training set and a verification set; S3, establishing a 1D-CNN initial model, and training the initial model by using the preprocessed training set to obtain a rolling bearing fault diagnosis model; checking the diagnosis performanceof the rolling bearing fault diagnosis model by using the verification set; and S4, acquiring a vibration signal of the rolling bearing equipment in real time, intercepting the vibration signal to obtain a sample, and inputtin</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112577745A
source esp@cenet
subjects MEASURING
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Rolling bearing fault diagnosis method based on 1D-CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PAN%20YUNA&rft.date=2021-03-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112577745A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true