Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method

The invention discloses an active power distribution network user power consumption behavior variable weight combination prediction model and prediction method, and relates to the field of active power distribution network load prediction. The system comprises an Elman neural network module used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHAO FANGBING, YANG LICHAO, YANG CHENGTAO, YANG GENTIAN, LI HAIDUO, ZHANG ZHIJIN, LI KUN, ZHANG WANJIE, YANG ZHENMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHAO FANGBING
YANG LICHAO
YANG CHENGTAO
YANG GENTIAN
LI HAIDUO
ZHANG ZHIJIN
LI KUN
ZHANG WANJIE
YANG ZHENMING
description The invention discloses an active power distribution network user power consumption behavior variable weight combination prediction model and prediction method, and relates to the field of active power distribution network load prediction. The system comprises an Elman neural network module used for solving a weight sequence of a combined prediction model, and a variable weight combined predictionmodule based on an ordered induction weighted average operator. The variable weight combination prediction module obtains a weight sequence of each single user power consumption behavior prediction model output by a network by taking an induced ordered weighted average operator of each single model as input of an Elman neural network, and synthesizes a prediction result of each single user powerconsumption behavior prediction model through the weight sequence. And a combined prediction result with higher precision is obtained. According to the method, the strong mapping capability of the Elman neural network is fully
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112561115A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112561115A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112561115A3</originalsourceid><addsrcrecordid>eNqNjjEOwjAQBNNQIOAPxwMoDAp9FIGoqOijs32QE47Psp3kAzycKNDQUe1qZ4pdFq_KZB4IgowUwXLKkXWfWTx4yqPEJ_RpIh9uxKe-CzPW1OLAEmHAyKgdwUj8aPMkdZo9zlKIZNnMtRNLDtDbn5FyK3ZdLO7oEm2-uSq259OtvuwoSEMpoKHpTFNfldqXR6VUWR3-cd6fRExv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method</title><source>esp@cenet</source><creator>SHAO FANGBING ; YANG LICHAO ; YANG CHENGTAO ; YANG GENTIAN ; LI HAIDUO ; ZHANG ZHIJIN ; LI KUN ; ZHANG WANJIE ; YANG ZHENMING</creator><creatorcontrib>SHAO FANGBING ; YANG LICHAO ; YANG CHENGTAO ; YANG GENTIAN ; LI HAIDUO ; ZHANG ZHIJIN ; LI KUN ; ZHANG WANJIE ; YANG ZHENMING</creatorcontrib><description>The invention discloses an active power distribution network user power consumption behavior variable weight combination prediction model and prediction method, and relates to the field of active power distribution network load prediction. The system comprises an Elman neural network module used for solving a weight sequence of a combined prediction model, and a variable weight combined predictionmodule based on an ordered induction weighted average operator. The variable weight combination prediction module obtains a weight sequence of each single user power consumption behavior prediction model output by a network by taking an induced ordered weighted average operator of each single model as input of an Elman neural network, and synthesizes a prediction result of each single user powerconsumption behavior prediction model through the weight sequence. And a combined prediction result with higher precision is obtained. According to the method, the strong mapping capability of the Elman neural network is fully</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210326&amp;DB=EPODOC&amp;CC=CN&amp;NR=112561115A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210326&amp;DB=EPODOC&amp;CC=CN&amp;NR=112561115A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHAO FANGBING</creatorcontrib><creatorcontrib>YANG LICHAO</creatorcontrib><creatorcontrib>YANG CHENGTAO</creatorcontrib><creatorcontrib>YANG GENTIAN</creatorcontrib><creatorcontrib>LI HAIDUO</creatorcontrib><creatorcontrib>ZHANG ZHIJIN</creatorcontrib><creatorcontrib>LI KUN</creatorcontrib><creatorcontrib>ZHANG WANJIE</creatorcontrib><creatorcontrib>YANG ZHENMING</creatorcontrib><title>Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method</title><description>The invention discloses an active power distribution network user power consumption behavior variable weight combination prediction model and prediction method, and relates to the field of active power distribution network load prediction. The system comprises an Elman neural network module used for solving a weight sequence of a combined prediction model, and a variable weight combined predictionmodule based on an ordered induction weighted average operator. The variable weight combination prediction module obtains a weight sequence of each single user power consumption behavior prediction model output by a network by taking an induced ordered weighted average operator of each single model as input of an Elman neural network, and synthesizes a prediction result of each single user powerconsumption behavior prediction model through the weight sequence. And a combined prediction result with higher precision is obtained. According to the method, the strong mapping capability of the Elman neural network is fully</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjjEOwjAQBNNQIOAPxwMoDAp9FIGoqOijs32QE47Psp3kAzycKNDQUe1qZ4pdFq_KZB4IgowUwXLKkXWfWTx4yqPEJ_RpIh9uxKe-CzPW1OLAEmHAyKgdwUj8aPMkdZo9zlKIZNnMtRNLDtDbn5FyK3ZdLO7oEm2-uSq259OtvuwoSEMpoKHpTFNfldqXR6VUWR3-cd6fRExv</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>SHAO FANGBING</creator><creator>YANG LICHAO</creator><creator>YANG CHENGTAO</creator><creator>YANG GENTIAN</creator><creator>LI HAIDUO</creator><creator>ZHANG ZHIJIN</creator><creator>LI KUN</creator><creator>ZHANG WANJIE</creator><creator>YANG ZHENMING</creator><scope>EVB</scope></search><sort><creationdate>20210326</creationdate><title>Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method</title><author>SHAO FANGBING ; YANG LICHAO ; YANG CHENGTAO ; YANG GENTIAN ; LI HAIDUO ; ZHANG ZHIJIN ; LI KUN ; ZHANG WANJIE ; YANG ZHENMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112561115A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>SHAO FANGBING</creatorcontrib><creatorcontrib>YANG LICHAO</creatorcontrib><creatorcontrib>YANG CHENGTAO</creatorcontrib><creatorcontrib>YANG GENTIAN</creatorcontrib><creatorcontrib>LI HAIDUO</creatorcontrib><creatorcontrib>ZHANG ZHIJIN</creatorcontrib><creatorcontrib>LI KUN</creatorcontrib><creatorcontrib>ZHANG WANJIE</creatorcontrib><creatorcontrib>YANG ZHENMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHAO FANGBING</au><au>YANG LICHAO</au><au>YANG CHENGTAO</au><au>YANG GENTIAN</au><au>LI HAIDUO</au><au>ZHANG ZHIJIN</au><au>LI KUN</au><au>ZHANG WANJIE</au><au>YANG ZHENMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method</title><date>2021-03-26</date><risdate>2021</risdate><abstract>The invention discloses an active power distribution network user power consumption behavior variable weight combination prediction model and prediction method, and relates to the field of active power distribution network load prediction. The system comprises an Elman neural network module used for solving a weight sequence of a combined prediction model, and a variable weight combined predictionmodule based on an ordered induction weighted average operator. The variable weight combination prediction module obtains a weight sequence of each single user power consumption behavior prediction model output by a network by taking an induced ordered weighted average operator of each single model as input of an Elman neural network, and synthesizes a prediction result of each single user powerconsumption behavior prediction model through the weight sequence. And a combined prediction result with higher precision is obtained. According to the method, the strong mapping capability of the Elman neural network is fully</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112561115A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Active power distribution network user power consumption behavior variable weight combination prediction model and prediction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHAO%20FANGBING&rft.date=2021-03-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112561115A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true