Digital video frame deletion tampering detection method based on deep neural network
The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WU TIANLE LIU XIAOLONG FENG DEWANG FENG CHUNHUI |
description | The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features.
本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112532999A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112532999A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112532999A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywEokojCJQogKqr00RK_BAv_ZC9wfSzEAaieZjR6y6o_mtkIW3oZjUBTYgfSsBATPAm7iGT8XJRg_DoHuQdNN87QVFgDkTyeqZx4yDukx7paTGwzNr9dVdvzqe8uO8QwIEceUcqhu9Z1s28bpdSh_af5AKGXOPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Digital video frame deletion tampering detection method based on deep neural network</title><source>esp@cenet</source><creator>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</creator><creatorcontrib>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</creatorcontrib><description>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features.
本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210319&DB=EPODOC&CC=CN&NR=112532999A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210319&DB=EPODOC&CC=CN&NR=112532999A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU TIANLE</creatorcontrib><creatorcontrib>LIU XIAOLONG</creatorcontrib><creatorcontrib>FENG DEWANG</creatorcontrib><creatorcontrib>FENG CHUNHUI</creatorcontrib><title>Digital video frame deletion tampering detection method based on deep neural network</title><description>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features.
本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywEokojCJQogKqr00RK_BAv_ZC9wfSzEAaieZjR6y6o_mtkIW3oZjUBTYgfSsBATPAm7iGT8XJRg_DoHuQdNN87QVFgDkTyeqZx4yDukx7paTGwzNr9dVdvzqe8uO8QwIEceUcqhu9Z1s28bpdSh_af5AKGXOPM</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>WU TIANLE</creator><creator>LIU XIAOLONG</creator><creator>FENG DEWANG</creator><creator>FENG CHUNHUI</creator><scope>EVB</scope></search><sort><creationdate>20210319</creationdate><title>Digital video frame deletion tampering detection method based on deep neural network</title><author>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112532999A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>WU TIANLE</creatorcontrib><creatorcontrib>LIU XIAOLONG</creatorcontrib><creatorcontrib>FENG DEWANG</creatorcontrib><creatorcontrib>FENG CHUNHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU TIANLE</au><au>LIU XIAOLONG</au><au>FENG DEWANG</au><au>FENG CHUNHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Digital video frame deletion tampering detection method based on deep neural network</title><date>2021-03-19</date><risdate>2021</risdate><abstract>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features.
本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112532999A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION |
title | Digital video frame deletion tampering detection method based on deep neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20TIANLE&rft.date=2021-03-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112532999A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |