Digital video frame deletion tampering detection method based on deep neural network

The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU TIANLE, LIU XIAOLONG, FENG DEWANG, FENG CHUNHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU TIANLE
LIU XIAOLONG
FENG DEWANG
FENG CHUNHUI
description The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features. 本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112532999A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112532999A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112532999A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywEokojCJQogKqr00RK_BAv_ZC9wfSzEAaieZjR6y6o_mtkIW3oZjUBTYgfSsBATPAm7iGT8XJRg_DoHuQdNN87QVFgDkTyeqZx4yDukx7paTGwzNr9dVdvzqe8uO8QwIEceUcqhu9Z1s28bpdSh_af5AKGXOPM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Digital video frame deletion tampering detection method based on deep neural network</title><source>esp@cenet</source><creator>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</creator><creatorcontrib>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</creatorcontrib><description>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features. 本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210319&amp;DB=EPODOC&amp;CC=CN&amp;NR=112532999A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210319&amp;DB=EPODOC&amp;CC=CN&amp;NR=112532999A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU TIANLE</creatorcontrib><creatorcontrib>LIU XIAOLONG</creatorcontrib><creatorcontrib>FENG DEWANG</creatorcontrib><creatorcontrib>FENG CHUNHUI</creatorcontrib><title>Digital video frame deletion tampering detection method based on deep neural network</title><description>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features. 本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywEokojCJQogKqr00RK_BAv_ZC9wfSzEAaieZjR6y6o_mtkIW3oZjUBTYgfSsBATPAm7iGT8XJRg_DoHuQdNN87QVFgDkTyeqZx4yDukx7paTGwzNr9dVdvzqe8uO8QwIEceUcqhu9Z1s28bpdSh_af5AKGXOPM</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>WU TIANLE</creator><creator>LIU XIAOLONG</creator><creator>FENG DEWANG</creator><creator>FENG CHUNHUI</creator><scope>EVB</scope></search><sort><creationdate>20210319</creationdate><title>Digital video frame deletion tampering detection method based on deep neural network</title><author>WU TIANLE ; LIU XIAOLONG ; FENG DEWANG ; FENG CHUNHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112532999A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>WU TIANLE</creatorcontrib><creatorcontrib>LIU XIAOLONG</creatorcontrib><creatorcontrib>FENG DEWANG</creatorcontrib><creatorcontrib>FENG CHUNHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU TIANLE</au><au>LIU XIAOLONG</au><au>FENG DEWANG</au><au>FENG CHUNHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Digital video frame deletion tampering detection method based on deep neural network</title><date>2021-03-19</date><risdate>2021</risdate><abstract>The invention relates to a digital video frame deletion tampering detection method based on a deep neural network. The method comprises the following steps: editing a to-be-detected video into a plurality of video clips; extracting pixel-level differential features and global differential features of adjacent frames from the video clips by using a multi-scale differential convolutional neural network MsDCNN, and fusing the pixel-level differential features and the global differential features to form a multi-scale differential feature; inputting the multi-scale differential feature into an LSTM network using a one-way attention mechanism, obtaining network output scores of the video clips through a full connection layer, and determining whether frame deletion exists in intermediate pointsof the video clips or not; reducing false detection by using a post-processing method based on video local spatial-temporal features. 本发明涉及一种基于深度神经网络的数字视频删帧篡改检测方法。该方法实现过程:将待检测视频剪辑成为若干个视频片段;利用多尺度差分卷积网络MsDCNN从视频片段中提取相邻帧的像素级差分特征</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112532999A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
title Digital video frame deletion tampering detection method based on deep neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20TIANLE&rft.date=2021-03-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112532999A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true