Intelligent drug target affinity prediction method and process

The invention discloses an intelligent drug target affinity prediction method and process. The method comprises the following steps of S1, data extraction, S2, numeralization processing, S3, redundantinformation processing, S4, data splicing processing, S5, affinity prediction and S6, drug molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DU YU, ZHAO LIANFENG, HUANG MIAOLING, JIA MENG, WANG ZHONGYUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DU YU
ZHAO LIANFENG
HUANG MIAOLING
JIA MENG
WANG ZHONGYUN
description The invention discloses an intelligent drug target affinity prediction method and process. The method comprises the following steps of S1, data extraction, S2, numeralization processing, S3, redundantinformation processing, S4, data splicing processing, S5, affinity prediction and S6, drug molecular factor prediction. According to the method, the variational automatic encoder is used for removinga lot of redundant information existing in the protein sequence feature vector, reducing the feature dimension and improving the prediction accuracy and efficiency; meanwhile, the quantitative structure-activity relationship between the pharmaceutical chemical mechanism and the target is established through a mathematical statistics method, so that the affinity prediction of the pharmaceutical chemical structure is calculated; thus, double-mode prediction analysis is carried out on drug and target affinity, prediction results can be integrated and analyzed, and the prediction accuracy is remarkably improved. 本发明公开了一种智
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112489737A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112489737A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112489737A3</originalsourceid><addsrcrecordid>eNrjZLDzzCtJzcnJTE_NK1FIKSpNVyhJLEpPLVFITEvLzMssqVQoKEpNyUwuyczPU8hNLcnIT1FIzEsBiuYnpxYX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MjEwtLc2NzR2Ni1AAAkQAxDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent drug target affinity prediction method and process</title><source>esp@cenet</source><creator>DU YU ; ZHAO LIANFENG ; HUANG MIAOLING ; JIA MENG ; WANG ZHONGYUN</creator><creatorcontrib>DU YU ; ZHAO LIANFENG ; HUANG MIAOLING ; JIA MENG ; WANG ZHONGYUN</creatorcontrib><description>The invention discloses an intelligent drug target affinity prediction method and process. The method comprises the following steps of S1, data extraction, S2, numeralization processing, S3, redundantinformation processing, S4, data splicing processing, S5, affinity prediction and S6, drug molecular factor prediction. According to the method, the variational automatic encoder is used for removinga lot of redundant information existing in the protein sequence feature vector, reducing the feature dimension and improving the prediction accuracy and efficiency; meanwhile, the quantitative structure-activity relationship between the pharmaceutical chemical mechanism and the target is established through a mathematical statistics method, so that the affinity prediction of the pharmaceutical chemical structure is calculated; thus, double-mode prediction analysis is carried out on drug and target affinity, prediction results can be integrated and analyzed, and the prediction accuracy is remarkably improved. 本发明公开了一种智</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210312&amp;DB=EPODOC&amp;CC=CN&amp;NR=112489737A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210312&amp;DB=EPODOC&amp;CC=CN&amp;NR=112489737A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DU YU</creatorcontrib><creatorcontrib>ZHAO LIANFENG</creatorcontrib><creatorcontrib>HUANG MIAOLING</creatorcontrib><creatorcontrib>JIA MENG</creatorcontrib><creatorcontrib>WANG ZHONGYUN</creatorcontrib><title>Intelligent drug target affinity prediction method and process</title><description>The invention discloses an intelligent drug target affinity prediction method and process. The method comprises the following steps of S1, data extraction, S2, numeralization processing, S3, redundantinformation processing, S4, data splicing processing, S5, affinity prediction and S6, drug molecular factor prediction. According to the method, the variational automatic encoder is used for removinga lot of redundant information existing in the protein sequence feature vector, reducing the feature dimension and improving the prediction accuracy and efficiency; meanwhile, the quantitative structure-activity relationship between the pharmaceutical chemical mechanism and the target is established through a mathematical statistics method, so that the affinity prediction of the pharmaceutical chemical structure is calculated; thus, double-mode prediction analysis is carried out on drug and target affinity, prediction results can be integrated and analyzed, and the prediction accuracy is remarkably improved. 本发明公开了一种智</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDzzCtJzcnJTE_NK1FIKSpNVyhJLEpPLVFITEvLzMssqVQoKEpNyUwuyczPU8hNLcnIT1FIzEsBiuYnpxYX8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MjEwtLc2NzR2Ni1AAAkQAxDw</recordid><startdate>20210312</startdate><enddate>20210312</enddate><creator>DU YU</creator><creator>ZHAO LIANFENG</creator><creator>HUANG MIAOLING</creator><creator>JIA MENG</creator><creator>WANG ZHONGYUN</creator><scope>EVB</scope></search><sort><creationdate>20210312</creationdate><title>Intelligent drug target affinity prediction method and process</title><author>DU YU ; ZHAO LIANFENG ; HUANG MIAOLING ; JIA MENG ; WANG ZHONGYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112489737A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>DU YU</creatorcontrib><creatorcontrib>ZHAO LIANFENG</creatorcontrib><creatorcontrib>HUANG MIAOLING</creatorcontrib><creatorcontrib>JIA MENG</creatorcontrib><creatorcontrib>WANG ZHONGYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DU YU</au><au>ZHAO LIANFENG</au><au>HUANG MIAOLING</au><au>JIA MENG</au><au>WANG ZHONGYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent drug target affinity prediction method and process</title><date>2021-03-12</date><risdate>2021</risdate><abstract>The invention discloses an intelligent drug target affinity prediction method and process. The method comprises the following steps of S1, data extraction, S2, numeralization processing, S3, redundantinformation processing, S4, data splicing processing, S5, affinity prediction and S6, drug molecular factor prediction. According to the method, the variational automatic encoder is used for removinga lot of redundant information existing in the protein sequence feature vector, reducing the feature dimension and improving the prediction accuracy and efficiency; meanwhile, the quantitative structure-activity relationship between the pharmaceutical chemical mechanism and the target is established through a mathematical statistics method, so that the affinity prediction of the pharmaceutical chemical structure is calculated; thus, double-mode prediction analysis is carried out on drug and target affinity, prediction results can be integrated and analyzed, and the prediction accuracy is remarkably improved. 本发明公开了一种智</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112489737A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Intelligent drug target affinity prediction method and process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DU%20YU&rft.date=2021-03-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112489737A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true