Information recommendation model training method and device, information recommendation method and device, and equipment

The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIAO YUN, ZENG ZEJI, ZHANG KAILIN, LI MING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIAO YUN
ZENG ZEJI
ZHANG KAILIN
LI MING
description The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112464100A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112464100A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112464100A3</originalsourceid><addsrcrecordid>eNrjZKjwzEvLL8pNLMnMz1MoSk3Oz81NzUuBcHPzU1JzFEqKEjPzMvPSFXJTSzLyUxQS81IUUlLLMpNTdRQy8WjGVA1ipxaWZhYAVZXwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQyMTMxNDAwNHY2LUAAAzWEbT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><source>esp@cenet</source><creator>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</creator><creatorcontrib>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</creatorcontrib><description>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210309&amp;DB=EPODOC&amp;CC=CN&amp;NR=112464100A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210309&amp;DB=EPODOC&amp;CC=CN&amp;NR=112464100A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO YUN</creatorcontrib><creatorcontrib>ZENG ZEJI</creatorcontrib><creatorcontrib>ZHANG KAILIN</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><description>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZKjwzEvLL8pNLMnMz1MoSk3Oz81NzUuBcHPzU1JzFEqKEjPzMvPSFXJTSzLyUxQS81IUUlLLMpNTdRQy8WjGVA1ipxaWZhYAVZXwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQyMTMxNDAwNHY2LUAAAzWEbT</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>XIAO YUN</creator><creator>ZENG ZEJI</creator><creator>ZHANG KAILIN</creator><creator>LI MING</creator><scope>EVB</scope></search><sort><creationdate>20210309</creationdate><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><author>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112464100A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO YUN</creatorcontrib><creatorcontrib>ZENG ZEJI</creatorcontrib><creatorcontrib>ZHANG KAILIN</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO YUN</au><au>ZENG ZEJI</au><au>ZHANG KAILIN</au><au>LI MING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><date>2021-03-09</date><risdate>2021</risdate><abstract>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112464100A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Information recommendation model training method and device, information recommendation method and device, and equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20YUN&rft.date=2021-03-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112464100A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true