Information recommendation model training method and device, information recommendation method and device, and equipment
The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIAO YUN ZENG ZEJI ZHANG KAILIN LI MING |
description | The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112464100A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112464100A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112464100A3</originalsourceid><addsrcrecordid>eNrjZKjwzEvLL8pNLMnMz1MoSk3Oz81NzUuBcHPzU1JzFEqKEjPzMvPSFXJTSzLyUxQS81IUUlLLMpNTdRQy8WjGVA1ipxaWZhYAVZXwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQyMTMxNDAwNHY2LUAAAzWEbT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><source>esp@cenet</source><creator>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</creator><creatorcontrib>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</creatorcontrib><description>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210309&DB=EPODOC&CC=CN&NR=112464100A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210309&DB=EPODOC&CC=CN&NR=112464100A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIAO YUN</creatorcontrib><creatorcontrib>ZENG ZEJI</creatorcontrib><creatorcontrib>ZHANG KAILIN</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><description>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZKjwzEvLL8pNLMnMz1MoSk3Oz81NzUuBcHPzU1JzFEqKEjPzMvPSFXJTSzLyUxQS81IUUlLLMpNTdRQy8WjGVA1ipxaWZhYAVZXwMLCmJeYUp_JCaW4GRTfXEGcP3dSC_PjU4oLE5NS81JJ4Zz9DQyMTMxNDAwNHY2LUAAAzWEbT</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>XIAO YUN</creator><creator>ZENG ZEJI</creator><creator>ZHANG KAILIN</creator><creator>LI MING</creator><scope>EVB</scope></search><sort><creationdate>20210309</creationdate><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><author>XIAO YUN ; ZENG ZEJI ; ZHANG KAILIN ; LI MING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112464100A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIAO YUN</creatorcontrib><creatorcontrib>ZENG ZEJI</creatorcontrib><creatorcontrib>ZHANG KAILIN</creatorcontrib><creatorcontrib>LI MING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIAO YUN</au><au>ZENG ZEJI</au><au>ZHANG KAILIN</au><au>LI MING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Information recommendation model training method and device, information recommendation method and device, and equipment</title><date>2021-03-09</date><risdate>2021</risdate><abstract>The invention provides an information recommendation model training method and device, an information recommendation method and device, and equipment, and relates to the technical field of deep learning. The method comprises the following steps: acquiring a multi-level label tree of the application field of an information recommendation model, wherein each level of the multi-level label tree comprises at least one label feature of the application field, and in every two adjacent levels of the multi-level label tree, one label feature of the next level uniquely belongs to one label feature of the previous level; generating an embedded matrix according to the label feature of the last level in the multi-level label tree; generating an index record table corresponding to the embedded matrix according to the affiliation relation between the label features in the multi-level label tree, wherein the index record table comprises at least one index value; and training to obtain an informationrecommendation model acco</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112464100A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Information recommendation model training method and device, information recommendation method and device, and equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIAO%20YUN&rft.date=2021-03-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112464100A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |