Network flow recognition method and device, and computer storage medium
The invention discloses a network flow recognition method and device, and a medium, and the method comprises the steps: preprocessing collected network data, extracting the feature information of eachnetwork session, and generating a flow log; based on the flow log, constructing a first-form flow gr...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TONG XINXIN ZHANG YONGDONG TAN XIAOBIN WU FENG CHEN LING'AN JIANG XIAOFENG YANG JIAN ZHENG QUAN |
description | The invention discloses a network flow recognition method and device, and a medium, and the method comprises the steps: preprocessing collected network data, extracting the feature information of eachnetwork session, and generating a flow log; based on the flow log, constructing a first-form flow graph in a preset time period; adding related edges for constructing the correlation between the server-side nodes in the first-form traffic graph, and generating a second-form traffic graph; training the graph neural network by utilizing the data of the second-form flow graph to generate a network flow recognition model; converting the unknown traffic into the second-form traffic graph and inputting the second-form traffic graph into a network traffic recognition model; enabling the network traffic recognition model to match the second form traffic graph of the unknown traffic with the graph mode learned by the network traffic recognition model; and when the matching degree is greater than apreset threshold, judging |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112437022A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112437022A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112437022A3</originalsourceid><addsrcrecordid>eNrjZHD3Sy0pzy_KVkjLyS9XKEpNzk_PyyzJzM9TyE0tychPUUjMS1FISS3LTE7VAbOT83MLSktSixSKS_KLEtNTgepSMktzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGRibG5gZGRozExagBxJTPl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Network flow recognition method and device, and computer storage medium</title><source>esp@cenet</source><creator>TONG XINXIN ; ZHANG YONGDONG ; TAN XIAOBIN ; WU FENG ; CHEN LING'AN ; JIANG XIAOFENG ; YANG JIAN ; ZHENG QUAN</creator><creatorcontrib>TONG XINXIN ; ZHANG YONGDONG ; TAN XIAOBIN ; WU FENG ; CHEN LING'AN ; JIANG XIAOFENG ; YANG JIAN ; ZHENG QUAN</creatorcontrib><description>The invention discloses a network flow recognition method and device, and a medium, and the method comprises the steps: preprocessing collected network data, extracting the feature information of eachnetwork session, and generating a flow log; based on the flow log, constructing a first-form flow graph in a preset time period; adding related edges for constructing the correlation between the server-side nodes in the first-form traffic graph, and generating a second-form traffic graph; training the graph neural network by utilizing the data of the second-form flow graph to generate a network flow recognition model; converting the unknown traffic into the second-form traffic graph and inputting the second-form traffic graph into a network traffic recognition model; enabling the network traffic recognition model to match the second form traffic graph of the unknown traffic with the graph mode learned by the network traffic recognition model; and when the matching degree is greater than apreset threshold, judging</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210302&DB=EPODOC&CC=CN&NR=112437022A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210302&DB=EPODOC&CC=CN&NR=112437022A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TONG XINXIN</creatorcontrib><creatorcontrib>ZHANG YONGDONG</creatorcontrib><creatorcontrib>TAN XIAOBIN</creatorcontrib><creatorcontrib>WU FENG</creatorcontrib><creatorcontrib>CHEN LING'AN</creatorcontrib><creatorcontrib>JIANG XIAOFENG</creatorcontrib><creatorcontrib>YANG JIAN</creatorcontrib><creatorcontrib>ZHENG QUAN</creatorcontrib><title>Network flow recognition method and device, and computer storage medium</title><description>The invention discloses a network flow recognition method and device, and a medium, and the method comprises the steps: preprocessing collected network data, extracting the feature information of eachnetwork session, and generating a flow log; based on the flow log, constructing a first-form flow graph in a preset time period; adding related edges for constructing the correlation between the server-side nodes in the first-form traffic graph, and generating a second-form traffic graph; training the graph neural network by utilizing the data of the second-form flow graph to generate a network flow recognition model; converting the unknown traffic into the second-form traffic graph and inputting the second-form traffic graph into a network traffic recognition model; enabling the network traffic recognition model to match the second form traffic graph of the unknown traffic with the graph mode learned by the network traffic recognition model; and when the matching degree is greater than apreset threshold, judging</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3Sy0pzy_KVkjLyS9XKEpNzk_PyyzJzM9TyE0tychPUUjMS1FISS3LTE7VAbOT83MLSktSixSKS_KLEtNTgepSMktzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGRibG5gZGRozExagBxJTPl</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>TONG XINXIN</creator><creator>ZHANG YONGDONG</creator><creator>TAN XIAOBIN</creator><creator>WU FENG</creator><creator>CHEN LING'AN</creator><creator>JIANG XIAOFENG</creator><creator>YANG JIAN</creator><creator>ZHENG QUAN</creator><scope>EVB</scope></search><sort><creationdate>20210302</creationdate><title>Network flow recognition method and device, and computer storage medium</title><author>TONG XINXIN ; ZHANG YONGDONG ; TAN XIAOBIN ; WU FENG ; CHEN LING'AN ; JIANG XIAOFENG ; YANG JIAN ; ZHENG QUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112437022A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>TONG XINXIN</creatorcontrib><creatorcontrib>ZHANG YONGDONG</creatorcontrib><creatorcontrib>TAN XIAOBIN</creatorcontrib><creatorcontrib>WU FENG</creatorcontrib><creatorcontrib>CHEN LING'AN</creatorcontrib><creatorcontrib>JIANG XIAOFENG</creatorcontrib><creatorcontrib>YANG JIAN</creatorcontrib><creatorcontrib>ZHENG QUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TONG XINXIN</au><au>ZHANG YONGDONG</au><au>TAN XIAOBIN</au><au>WU FENG</au><au>CHEN LING'AN</au><au>JIANG XIAOFENG</au><au>YANG JIAN</au><au>ZHENG QUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Network flow recognition method and device, and computer storage medium</title><date>2021-03-02</date><risdate>2021</risdate><abstract>The invention discloses a network flow recognition method and device, and a medium, and the method comprises the steps: preprocessing collected network data, extracting the feature information of eachnetwork session, and generating a flow log; based on the flow log, constructing a first-form flow graph in a preset time period; adding related edges for constructing the correlation between the server-side nodes in the first-form traffic graph, and generating a second-form traffic graph; training the graph neural network by utilizing the data of the second-form flow graph to generate a network flow recognition model; converting the unknown traffic into the second-form traffic graph and inputting the second-form traffic graph into a network traffic recognition model; enabling the network traffic recognition model to match the second form traffic graph of the unknown traffic with the graph mode learned by the network traffic recognition model; and when the matching degree is greater than apreset threshold, judging</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112437022A |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Network flow recognition method and device, and computer storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TONG%20XINXIN&rft.date=2021-03-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112437022A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |