Semi-supervised learning pseudo label assignment method based on clustering fusion

The invention discloses a semi-supervised learning pseudo label assignment method based on clustering fusion, and the method comprises the steps: carrying out the semi-supervised learning of a convolutional neural network with a label-free data set, carrying out the pre-training of the neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG RONG, ZHANG LEI, ZHU XIAOQIN, BAI WANRONG, LIU JIXIANG, WEI FENG, ZHANG YUGANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG RONG
ZHANG LEI
ZHU XIAOQIN
BAI WANRONG
LIU JIXIANG
WEI FENG
ZHANG YUGANG
description The invention discloses a semi-supervised learning pseudo label assignment method based on clustering fusion, and the method comprises the steps: carrying out the semi-supervised learning of a convolutional neural network with a label-free data set, carrying out the pre-training of the neural network through employing labeled data and label-free data, and extracting data features through employinga trained network; assigning pseudo tags to N pieces of untagged data closest to the tagged data by using a nearest neighbor method; analyzing all the data information by using k-means clustering, and endowing clustered pseudo tags to the data which is not tagged; and continuously training the convolutional neural network by using the obtained label data and pseudo label data to obtain an optimalnetwork for label assignment. The method can be suitable for semi-supervised learning under deep learning in various fields; information of label-free data can be fully mined, and training data withricher content are provided
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112418331A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112418331A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112418331A3</originalsourceid><addsrcrecordid>eNqNy7EOwiAURuEuDkZ9h-sDdEAcXE2jcXJQ94aWv5UELoQLPr9p4gM4neU76-bxRHCt1IT8cQJLHiaz45mSoNpI3gzwZETczAFcKKC8o6XBLDoyjb5KQV6WqYqLvG1Wk_GC3a-bZn-9vLpbixR7SDIjGKXv7kodjuqktTrrf8wXZeI4mA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Semi-supervised learning pseudo label assignment method based on clustering fusion</title><source>esp@cenet</source><creator>WANG RONG ; ZHANG LEI ; ZHU XIAOQIN ; BAI WANRONG ; LIU JIXIANG ; WEI FENG ; ZHANG YUGANG</creator><creatorcontrib>WANG RONG ; ZHANG LEI ; ZHU XIAOQIN ; BAI WANRONG ; LIU JIXIANG ; WEI FENG ; ZHANG YUGANG</creatorcontrib><description>The invention discloses a semi-supervised learning pseudo label assignment method based on clustering fusion, and the method comprises the steps: carrying out the semi-supervised learning of a convolutional neural network with a label-free data set, carrying out the pre-training of the neural network through employing labeled data and label-free data, and extracting data features through employinga trained network; assigning pseudo tags to N pieces of untagged data closest to the tagged data by using a nearest neighbor method; analyzing all the data information by using k-means clustering, and endowing clustered pseudo tags to the data which is not tagged; and continuously training the convolutional neural network by using the obtained label data and pseudo label data to obtain an optimalnetwork for label assignment. The method can be suitable for semi-supervised learning under deep learning in various fields; information of label-free data can be fully mined, and training data withricher content are provided</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210226&amp;DB=EPODOC&amp;CC=CN&amp;NR=112418331A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210226&amp;DB=EPODOC&amp;CC=CN&amp;NR=112418331A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG RONG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHU XIAOQIN</creatorcontrib><creatorcontrib>BAI WANRONG</creatorcontrib><creatorcontrib>LIU JIXIANG</creatorcontrib><creatorcontrib>WEI FENG</creatorcontrib><creatorcontrib>ZHANG YUGANG</creatorcontrib><title>Semi-supervised learning pseudo label assignment method based on clustering fusion</title><description>The invention discloses a semi-supervised learning pseudo label assignment method based on clustering fusion, and the method comprises the steps: carrying out the semi-supervised learning of a convolutional neural network with a label-free data set, carrying out the pre-training of the neural network through employing labeled data and label-free data, and extracting data features through employinga trained network; assigning pseudo tags to N pieces of untagged data closest to the tagged data by using a nearest neighbor method; analyzing all the data information by using k-means clustering, and endowing clustered pseudo tags to the data which is not tagged; and continuously training the convolutional neural network by using the obtained label data and pseudo label data to obtain an optimalnetwork for label assignment. The method can be suitable for semi-supervised learning under deep learning in various fields; information of label-free data can be fully mined, and training data withricher content are provided</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EOwiAURuEuDkZ9h-sDdEAcXE2jcXJQ94aWv5UELoQLPr9p4gM4neU76-bxRHCt1IT8cQJLHiaz45mSoNpI3gzwZETczAFcKKC8o6XBLDoyjb5KQV6WqYqLvG1Wk_GC3a-bZn-9vLpbixR7SDIjGKXv7kodjuqktTrrf8wXZeI4mA</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>WANG RONG</creator><creator>ZHANG LEI</creator><creator>ZHU XIAOQIN</creator><creator>BAI WANRONG</creator><creator>LIU JIXIANG</creator><creator>WEI FENG</creator><creator>ZHANG YUGANG</creator><scope>EVB</scope></search><sort><creationdate>20210226</creationdate><title>Semi-supervised learning pseudo label assignment method based on clustering fusion</title><author>WANG RONG ; ZHANG LEI ; ZHU XIAOQIN ; BAI WANRONG ; LIU JIXIANG ; WEI FENG ; ZHANG YUGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112418331A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG RONG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>ZHU XIAOQIN</creatorcontrib><creatorcontrib>BAI WANRONG</creatorcontrib><creatorcontrib>LIU JIXIANG</creatorcontrib><creatorcontrib>WEI FENG</creatorcontrib><creatorcontrib>ZHANG YUGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG RONG</au><au>ZHANG LEI</au><au>ZHU XIAOQIN</au><au>BAI WANRONG</au><au>LIU JIXIANG</au><au>WEI FENG</au><au>ZHANG YUGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Semi-supervised learning pseudo label assignment method based on clustering fusion</title><date>2021-02-26</date><risdate>2021</risdate><abstract>The invention discloses a semi-supervised learning pseudo label assignment method based on clustering fusion, and the method comprises the steps: carrying out the semi-supervised learning of a convolutional neural network with a label-free data set, carrying out the pre-training of the neural network through employing labeled data and label-free data, and extracting data features through employinga trained network; assigning pseudo tags to N pieces of untagged data closest to the tagged data by using a nearest neighbor method; analyzing all the data information by using k-means clustering, and endowing clustered pseudo tags to the data which is not tagged; and continuously training the convolutional neural network by using the obtained label data and pseudo label data to obtain an optimalnetwork for label assignment. The method can be suitable for semi-supervised learning under deep learning in various fields; information of label-free data can be fully mined, and training data withricher content are provided</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112418331A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Semi-supervised learning pseudo label assignment method based on clustering fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20RONG&rft.date=2021-02-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112418331A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true