Intelligent vehicle trajectory prediction method based on environmental sensitivity

The invention discloses an intelligent trajectory prediction method based on environmental sensitivity. The method comprises the steps of searching trajectory data of the vehicle and preprocessing thetrajectory data; selecting an abscissa range and an ordinate range to establish a road network area;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN GANG, YAO CHANG, PANG ZHIFEI, LU PENG, WU SAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN GANG
YAO CHANG
PANG ZHIFEI
LU PENG
WU SAI
description The invention discloses an intelligent trajectory prediction method based on environmental sensitivity. The method comprises the steps of searching trajectory data of the vehicle and preprocessing thetrajectory data; selecting an abscissa range and an ordinate range to establish a road network area; dividing the road network area into equal grids according to the granularity; setting a grid mapping function according to the granularity, and converting the trajectory data into a grid trajectory sequence; performing statistical construction to obtain a grid granularity matrix; constructing a neural network model based on environmental sensitivity; training a neural network model; predicting by using the model prediction track; and updating the neural network model. According to the method,the road network is divided into the fine-grained grids, the overall situation of the road network is abstracted by using the neural network, and the information is added into the trajectory prediction model, so that the traje
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112396164A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112396164A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112396164A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wdYxEjAUoKijY324bx7JiuXvXC3HOTvTeEHWA0DM8vicROF99xBlDJ6th6k0XxgNcSJxgjHVjkIDdA-OHqZBEezQzLHIMN8Gk8Jklg5s07rYvE2PmHz46rYXs7P5rrDGFqk0VgItG3uZbmvjnVZH07VP80X-KA5vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent vehicle trajectory prediction method based on environmental sensitivity</title><source>esp@cenet</source><creator>CHEN GANG ; YAO CHANG ; PANG ZHIFEI ; LU PENG ; WU SAI</creator><creatorcontrib>CHEN GANG ; YAO CHANG ; PANG ZHIFEI ; LU PENG ; WU SAI</creatorcontrib><description>The invention discloses an intelligent trajectory prediction method based on environmental sensitivity. The method comprises the steps of searching trajectory data of the vehicle and preprocessing thetrajectory data; selecting an abscissa range and an ordinate range to establish a road network area; dividing the road network area into equal grids according to the granularity; setting a grid mapping function according to the granularity, and converting the trajectory data into a grid trajectory sequence; performing statistical construction to obtain a grid granularity matrix; constructing a neural network model based on environmental sensitivity; training a neural network model; predicting by using the model prediction track; and updating the neural network model. According to the method,the road network is divided into the fine-grained grids, the overall situation of the road network is abstracted by using the neural network, and the information is added into the trajectory prediction model, so that the traje</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210223&amp;DB=EPODOC&amp;CC=CN&amp;NR=112396164A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210223&amp;DB=EPODOC&amp;CC=CN&amp;NR=112396164A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN GANG</creatorcontrib><creatorcontrib>YAO CHANG</creatorcontrib><creatorcontrib>PANG ZHIFEI</creatorcontrib><creatorcontrib>LU PENG</creatorcontrib><creatorcontrib>WU SAI</creatorcontrib><title>Intelligent vehicle trajectory prediction method based on environmental sensitivity</title><description>The invention discloses an intelligent trajectory prediction method based on environmental sensitivity. The method comprises the steps of searching trajectory data of the vehicle and preprocessing thetrajectory data; selecting an abscissa range and an ordinate range to establish a road network area; dividing the road network area into equal grids according to the granularity; setting a grid mapping function according to the granularity, and converting the trajectory data into a grid trajectory sequence; performing statistical construction to obtain a grid granularity matrix; constructing a neural network model based on environmental sensitivity; training a neural network model; predicting by using the model prediction track; and updating the neural network model. According to the method,the road network is divided into the fine-grained grids, the overall situation of the road network is abstracted by using the neural network, and the information is added into the trajectory prediction model, so that the traje</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wdYxEjAUoKijY324bx7JiuXvXC3HOTvTeEHWA0DM8vicROF99xBlDJ6th6k0XxgNcSJxgjHVjkIDdA-OHqZBEezQzLHIMN8Gk8Jklg5s07rYvE2PmHz46rYXs7P5rrDGFqk0VgItG3uZbmvjnVZH07VP80X-KA5vQ</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>CHEN GANG</creator><creator>YAO CHANG</creator><creator>PANG ZHIFEI</creator><creator>LU PENG</creator><creator>WU SAI</creator><scope>EVB</scope></search><sort><creationdate>20210223</creationdate><title>Intelligent vehicle trajectory prediction method based on environmental sensitivity</title><author>CHEN GANG ; YAO CHANG ; PANG ZHIFEI ; LU PENG ; WU SAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112396164A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN GANG</creatorcontrib><creatorcontrib>YAO CHANG</creatorcontrib><creatorcontrib>PANG ZHIFEI</creatorcontrib><creatorcontrib>LU PENG</creatorcontrib><creatorcontrib>WU SAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN GANG</au><au>YAO CHANG</au><au>PANG ZHIFEI</au><au>LU PENG</au><au>WU SAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent vehicle trajectory prediction method based on environmental sensitivity</title><date>2021-02-23</date><risdate>2021</risdate><abstract>The invention discloses an intelligent trajectory prediction method based on environmental sensitivity. The method comprises the steps of searching trajectory data of the vehicle and preprocessing thetrajectory data; selecting an abscissa range and an ordinate range to establish a road network area; dividing the road network area into equal grids according to the granularity; setting a grid mapping function according to the granularity, and converting the trajectory data into a grid trajectory sequence; performing statistical construction to obtain a grid granularity matrix; constructing a neural network model based on environmental sensitivity; training a neural network model; predicting by using the model prediction track; and updating the neural network model. According to the method,the road network is divided into the fine-grained grids, the overall situation of the road network is abstracted by using the neural network, and the information is added into the trajectory prediction model, so that the traje</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112396164A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Intelligent vehicle trajectory prediction method based on environmental sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20GANG&rft.date=2021-02-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112396164A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true