Matching method and system for related sentences in different documents and computer readable storage medium
The invention discloses a matching method for related sentences in different documents, which is used for matching reference sentences in reference documents with candidate sentences in comparison documents, and comprises the following steps: on three levels of shallow semantics, statistical informa...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG WENGUANG HU MENG JI DAQI WANG ZHONGMENG CHEN YUNWEN HE MENGJIE |
description | The invention discloses a matching method for related sentences in different documents, which is used for matching reference sentences in reference documents with candidate sentences in comparison documents, and comprises the following steps: on three levels of shallow semantics, statistical information and deep semantics, calculating shallow-layer scores, statistical scores and deep-layer scoresof the candidate sentences relative to the reference sentences, wherein the shallow-layer scores, the statistical scores and the deep-layer scores represent matching degrees; and fitting the shallow score, the statistical score and the deep score based on a linear regression model to obtain a final score used for representing the matching degree of the candidate sentence relative to the referencesentence. The document matching accuracy is improved.
本发明公开了一种不同文档中相关句子的匹配方法,用于将基准文档中的基准句子和比对文档中的候选句子进行匹配,所述匹配方法包括:在浅层语义、统计信息、深层语义三个层面上,计算候选句子相对于基准句子的表示匹配程度的浅层分数、统计分数、深层分数;基于线性回归模型拟合所述浅层分数、统计分数和深层分数,获得用来表示所述候选句子相对于基准句子的匹配度的最终分 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112380830A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112380830A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112380830A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQRNNQIOAOywGQEtKkRRGIBir6aLHHiSV_IntTcHsM4gBUM3qaN-vK3VjUZMNIHjJFTRw05VcWeDIxUYJjQUEIgqCQyQbS1hikQkhHtfhS8tdT0c-L4GOx5qcDZYmJR5RzbRe_rVaGXcbul5tqfzk_-usBcxyQZ1YIkKG_N82x7equrU_tP5s3TzdCIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Matching method and system for related sentences in different documents and computer readable storage medium</title><source>esp@cenet</source><creator>WANG WENGUANG ; HU MENG ; JI DAQI ; WANG ZHONGMENG ; CHEN YUNWEN ; HE MENGJIE</creator><creatorcontrib>WANG WENGUANG ; HU MENG ; JI DAQI ; WANG ZHONGMENG ; CHEN YUNWEN ; HE MENGJIE</creatorcontrib><description>The invention discloses a matching method for related sentences in different documents, which is used for matching reference sentences in reference documents with candidate sentences in comparison documents, and comprises the following steps: on three levels of shallow semantics, statistical information and deep semantics, calculating shallow-layer scores, statistical scores and deep-layer scoresof the candidate sentences relative to the reference sentences, wherein the shallow-layer scores, the statistical scores and the deep-layer scores represent matching degrees; and fitting the shallow score, the statistical score and the deep score based on a linear regression model to obtain a final score used for representing the matching degree of the candidate sentence relative to the referencesentence. The document matching accuracy is improved.
本发明公开了一种不同文档中相关句子的匹配方法,用于将基准文档中的基准句子和比对文档中的候选句子进行匹配,所述匹配方法包括:在浅层语义、统计信息、深层语义三个层面上,计算候选句子相对于基准句子的表示匹配程度的浅层分数、统计分数、深层分数;基于线性回归模型拟合所述浅层分数、统计分数和深层分数,获得用来表示所述候选句子相对于基准句子的匹配度的最终分</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210219&DB=EPODOC&CC=CN&NR=112380830A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210219&DB=EPODOC&CC=CN&NR=112380830A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WENGUANG</creatorcontrib><creatorcontrib>HU MENG</creatorcontrib><creatorcontrib>JI DAQI</creatorcontrib><creatorcontrib>WANG ZHONGMENG</creatorcontrib><creatorcontrib>CHEN YUNWEN</creatorcontrib><creatorcontrib>HE MENGJIE</creatorcontrib><title>Matching method and system for related sentences in different documents and computer readable storage medium</title><description>The invention discloses a matching method for related sentences in different documents, which is used for matching reference sentences in reference documents with candidate sentences in comparison documents, and comprises the following steps: on three levels of shallow semantics, statistical information and deep semantics, calculating shallow-layer scores, statistical scores and deep-layer scoresof the candidate sentences relative to the reference sentences, wherein the shallow-layer scores, the statistical scores and the deep-layer scores represent matching degrees; and fitting the shallow score, the statistical score and the deep score based on a linear regression model to obtain a final score used for representing the matching degree of the candidate sentence relative to the referencesentence. The document matching accuracy is improved.
本发明公开了一种不同文档中相关句子的匹配方法,用于将基准文档中的基准句子和比对文档中的候选句子进行匹配,所述匹配方法包括:在浅层语义、统计信息、深层语义三个层面上,计算候选句子相对于基准句子的表示匹配程度的浅层分数、统计分数、深层分数;基于线性回归模型拟合所述浅层分数、统计分数和深层分数,获得用来表示所述候选句子相对于基准句子的匹配度的最终分</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQRNNQIOAOywGQEtKkRRGIBir6aLHHiSV_IntTcHsM4gBUM3qaN-vK3VjUZMNIHjJFTRw05VcWeDIxUYJjQUEIgqCQyQbS1hikQkhHtfhS8tdT0c-L4GOx5qcDZYmJR5RzbRe_rVaGXcbul5tqfzk_-usBcxyQZ1YIkKG_N82x7equrU_tP5s3TzdCIw</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>WANG WENGUANG</creator><creator>HU MENG</creator><creator>JI DAQI</creator><creator>WANG ZHONGMENG</creator><creator>CHEN YUNWEN</creator><creator>HE MENGJIE</creator><scope>EVB</scope></search><sort><creationdate>20210219</creationdate><title>Matching method and system for related sentences in different documents and computer readable storage medium</title><author>WANG WENGUANG ; HU MENG ; JI DAQI ; WANG ZHONGMENG ; CHEN YUNWEN ; HE MENGJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112380830A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WENGUANG</creatorcontrib><creatorcontrib>HU MENG</creatorcontrib><creatorcontrib>JI DAQI</creatorcontrib><creatorcontrib>WANG ZHONGMENG</creatorcontrib><creatorcontrib>CHEN YUNWEN</creatorcontrib><creatorcontrib>HE MENGJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WENGUANG</au><au>HU MENG</au><au>JI DAQI</au><au>WANG ZHONGMENG</au><au>CHEN YUNWEN</au><au>HE MENGJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Matching method and system for related sentences in different documents and computer readable storage medium</title><date>2021-02-19</date><risdate>2021</risdate><abstract>The invention discloses a matching method for related sentences in different documents, which is used for matching reference sentences in reference documents with candidate sentences in comparison documents, and comprises the following steps: on three levels of shallow semantics, statistical information and deep semantics, calculating shallow-layer scores, statistical scores and deep-layer scoresof the candidate sentences relative to the reference sentences, wherein the shallow-layer scores, the statistical scores and the deep-layer scores represent matching degrees; and fitting the shallow score, the statistical score and the deep score based on a linear regression model to obtain a final score used for representing the matching degree of the candidate sentence relative to the referencesentence. The document matching accuracy is improved.
本发明公开了一种不同文档中相关句子的匹配方法,用于将基准文档中的基准句子和比对文档中的候选句子进行匹配,所述匹配方法包括:在浅层语义、统计信息、深层语义三个层面上,计算候选句子相对于基准句子的表示匹配程度的浅层分数、统计分数、深层分数;基于线性回归模型拟合所述浅层分数、统计分数和深层分数,获得用来表示所述候选句子相对于基准句子的匹配度的最终分</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112380830A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Matching method and system for related sentences in different documents and computer readable storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WENGUANG&rft.date=2021-02-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112380830A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |