Ferrogram image intelligent identification method based on auto-encoding network
The invention discloses a ferrogram image intelligent identification method based on an auto-encoding network, which comprises the following steps: extracting a lubricating oil sample for mechanical equipment, making a ferrogram through a ferrogram analyzer, converting the ferrogram into a digital i...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WAN XIANG XUE LIMENG MA NINGGE FAN HONGWEI CAO XIANGANG GAO SHUOQI LIU QI ZHANG XUHUI |
description | The invention discloses a ferrogram image intelligent identification method based on an auto-encoding network, which comprises the following steps: extracting a lubricating oil sample for mechanical equipment, making a ferrogram through a ferrogram analyzer, converting the ferrogram into a digital image through microscope imaging to make a fault diagnosis sample, and designing a stack auto-encoding network on the basis of the fault diagnosis sample; and completing ferrogram image intelligent classification by using the network, and further identifying the type of the wear fault. According to the invention, ferrogram image intelligent identification based on the self-encoding network is realized, and the method has the characteristics of intelligence and high efficiency for equipment wear fault diagnosis.
本发明公开了一种基于自编码网络的铁谱图像智能识别方法,先针对机械设备提取润滑油样本,进而通过铁谱分析仪进行谱片制作,然后将谱片经显微镜呈像而转为数字图像制作故障诊断样本,在此基础上设计一种堆栈自编码网络,利用该网络完成铁谱图像智能分类,进而识别出磨损故障的类型。本发明实现了基于自编码网络的铁谱图像智能识别,对设备磨损故障诊断具有智能和高效的特点。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112347885A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112347885A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112347885A3</originalsourceid><addsrcrecordid>eNqNijEOwjAMALswIOAP5gEdSkF0RRUVE2Jgr0ziBoskrhIjvk8GHsByp5NuWd0GSklcwgAc0BFwVPKeHUUFtoU8sUFliRBIn2LhgZkslMa3Sk3RiOXoIJJ-JL3W1WJCn2nz86raDud7f6lplpHyjIbKOfbXptm1-2PXHU7tP88X4YE36g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ferrogram image intelligent identification method based on auto-encoding network</title><source>esp@cenet</source><creator>WAN XIANG ; XUE LIMENG ; MA NINGGE ; FAN HONGWEI ; CAO XIANGANG ; GAO SHUOQI ; LIU QI ; ZHANG XUHUI</creator><creatorcontrib>WAN XIANG ; XUE LIMENG ; MA NINGGE ; FAN HONGWEI ; CAO XIANGANG ; GAO SHUOQI ; LIU QI ; ZHANG XUHUI</creatorcontrib><description>The invention discloses a ferrogram image intelligent identification method based on an auto-encoding network, which comprises the following steps: extracting a lubricating oil sample for mechanical equipment, making a ferrogram through a ferrogram analyzer, converting the ferrogram into a digital image through microscope imaging to make a fault diagnosis sample, and designing a stack auto-encoding network on the basis of the fault diagnosis sample; and completing ferrogram image intelligent classification by using the network, and further identifying the type of the wear fault. According to the invention, ferrogram image intelligent identification based on the self-encoding network is realized, and the method has the characteristics of intelligence and high efficiency for equipment wear fault diagnosis.
本发明公开了一种基于自编码网络的铁谱图像智能识别方法,先针对机械设备提取润滑油样本,进而通过铁谱分析仪进行谱片制作,然后将谱片经显微镜呈像而转为数字图像制作故障诊断样本,在此基础上设计一种堆栈自编码网络,利用该网络完成铁谱图像智能分类,进而识别出磨损故障的类型。本发明实现了基于自编码网络的铁谱图像智能识别,对设备磨损故障诊断具有智能和高效的特点。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210209&DB=EPODOC&CC=CN&NR=112347885A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210209&DB=EPODOC&CC=CN&NR=112347885A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN XIANG</creatorcontrib><creatorcontrib>XUE LIMENG</creatorcontrib><creatorcontrib>MA NINGGE</creatorcontrib><creatorcontrib>FAN HONGWEI</creatorcontrib><creatorcontrib>CAO XIANGANG</creatorcontrib><creatorcontrib>GAO SHUOQI</creatorcontrib><creatorcontrib>LIU QI</creatorcontrib><creatorcontrib>ZHANG XUHUI</creatorcontrib><title>Ferrogram image intelligent identification method based on auto-encoding network</title><description>The invention discloses a ferrogram image intelligent identification method based on an auto-encoding network, which comprises the following steps: extracting a lubricating oil sample for mechanical equipment, making a ferrogram through a ferrogram analyzer, converting the ferrogram into a digital image through microscope imaging to make a fault diagnosis sample, and designing a stack auto-encoding network on the basis of the fault diagnosis sample; and completing ferrogram image intelligent classification by using the network, and further identifying the type of the wear fault. According to the invention, ferrogram image intelligent identification based on the self-encoding network is realized, and the method has the characteristics of intelligence and high efficiency for equipment wear fault diagnosis.
本发明公开了一种基于自编码网络的铁谱图像智能识别方法,先针对机械设备提取润滑油样本,进而通过铁谱分析仪进行谱片制作,然后将谱片经显微镜呈像而转为数字图像制作故障诊断样本,在此基础上设计一种堆栈自编码网络,利用该网络完成铁谱图像智能分类,进而识别出磨损故障的类型。本发明实现了基于自编码网络的铁谱图像智能识别,对设备磨损故障诊断具有智能和高效的特点。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEOwjAMALswIOAP5gEdSkF0RRUVE2Jgr0ziBoskrhIjvk8GHsByp5NuWd0GSklcwgAc0BFwVPKeHUUFtoU8sUFliRBIn2LhgZkslMa3Sk3RiOXoIJJ-JL3W1WJCn2nz86raDud7f6lplpHyjIbKOfbXptm1-2PXHU7tP88X4YE36g</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>WAN XIANG</creator><creator>XUE LIMENG</creator><creator>MA NINGGE</creator><creator>FAN HONGWEI</creator><creator>CAO XIANGANG</creator><creator>GAO SHUOQI</creator><creator>LIU QI</creator><creator>ZHANG XUHUI</creator><scope>EVB</scope></search><sort><creationdate>20210209</creationdate><title>Ferrogram image intelligent identification method based on auto-encoding network</title><author>WAN XIANG ; XUE LIMENG ; MA NINGGE ; FAN HONGWEI ; CAO XIANGANG ; GAO SHUOQI ; LIU QI ; ZHANG XUHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112347885A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN XIANG</creatorcontrib><creatorcontrib>XUE LIMENG</creatorcontrib><creatorcontrib>MA NINGGE</creatorcontrib><creatorcontrib>FAN HONGWEI</creatorcontrib><creatorcontrib>CAO XIANGANG</creatorcontrib><creatorcontrib>GAO SHUOQI</creatorcontrib><creatorcontrib>LIU QI</creatorcontrib><creatorcontrib>ZHANG XUHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN XIANG</au><au>XUE LIMENG</au><au>MA NINGGE</au><au>FAN HONGWEI</au><au>CAO XIANGANG</au><au>GAO SHUOQI</au><au>LIU QI</au><au>ZHANG XUHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ferrogram image intelligent identification method based on auto-encoding network</title><date>2021-02-09</date><risdate>2021</risdate><abstract>The invention discloses a ferrogram image intelligent identification method based on an auto-encoding network, which comprises the following steps: extracting a lubricating oil sample for mechanical equipment, making a ferrogram through a ferrogram analyzer, converting the ferrogram into a digital image through microscope imaging to make a fault diagnosis sample, and designing a stack auto-encoding network on the basis of the fault diagnosis sample; and completing ferrogram image intelligent classification by using the network, and further identifying the type of the wear fault. According to the invention, ferrogram image intelligent identification based on the self-encoding network is realized, and the method has the characteristics of intelligence and high efficiency for equipment wear fault diagnosis.
本发明公开了一种基于自编码网络的铁谱图像智能识别方法,先针对机械设备提取润滑油样本,进而通过铁谱分析仪进行谱片制作,然后将谱片经显微镜呈像而转为数字图像制作故障诊断样本,在此基础上设计一种堆栈自编码网络,利用该网络完成铁谱图像智能分类,进而识别出磨损故障的类型。本发明实现了基于自编码网络的铁谱图像智能识别,对设备磨损故障诊断具有智能和高效的特点。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112347885A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Ferrogram image intelligent identification method based on auto-encoding network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20XIANG&rft.date=2021-02-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112347885A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |