Power grid frequency situation prediction method based on transfer learning

The invention discloses a power grid frequency situation prediction method based on transfer learning, which can adapt to frequency situation prediction requirements when a power grid operation mode and a topological structure are changed, and improves accuracy and reliability of a model. The method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG GUOSONG, YUAN XIAOQING, ZHANG DAN, TANG JIANXING, YAO YAO, ZHU LINGZI, HE XIANQIANG, MA TANFENG, LIU MINGSHUN, WANG YIN, QIN HAI, OUYANG KEFENG, FAN XIANG, CHEN RUI, CAO JIE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG GUOSONG
YUAN XIAOQING
ZHANG DAN
TANG JIANXING
YAO YAO
ZHU LINGZI
HE XIANQIANG
MA TANFENG
LIU MINGSHUN
WANG YIN
QIN HAI
OUYANG KEFENG
FAN XIANG
CHEN RUI
CAO JIE
description The invention discloses a power grid frequency situation prediction method based on transfer learning, which can adapt to frequency situation prediction requirements when a power grid operation mode and a topological structure are changed, and improves accuracy and reliability of a model. The method comprises the following steps: firstly, constructing a post-fault frequency situation prediction model based on a convolutional neural network (CNN), then obtaining enough samples for training by utilizing a transfer learning method, and correcting parameters of the CNN frequency situation prediction model, thereby obtaining a more accurate prediction model, and improving the precision of a system frequency prediction result. The precision of the frequency situation prediction model can be remarkably improved, the frequency change situation of the disturbed system can be predicted more accurately, corresponding control measures such as generator tripping, load shedding and direct-current emergency power control ar
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112330488A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112330488A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112330488A3</originalsourceid><addsrcrecordid>eNrjZPAOyC9PLVJIL8pMUUgrSi0sTc1LrlQoziwpTSzJzM9TKChKTclMBjNzU0sy8lMUkhKLU1MUgPySosS84jSg5pzUxKK8zLx0HgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhkbGxgYmHhaEyMGgCkqTX2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid frequency situation prediction method based on transfer learning</title><source>esp@cenet</source><creator>WANG GUOSONG ; YUAN XIAOQING ; ZHANG DAN ; TANG JIANXING ; YAO YAO ; ZHU LINGZI ; HE XIANQIANG ; MA TANFENG ; LIU MINGSHUN ; WANG YIN ; QIN HAI ; OUYANG KEFENG ; FAN XIANG ; CHEN RUI ; CAO JIE</creator><creatorcontrib>WANG GUOSONG ; YUAN XIAOQING ; ZHANG DAN ; TANG JIANXING ; YAO YAO ; ZHU LINGZI ; HE XIANQIANG ; MA TANFENG ; LIU MINGSHUN ; WANG YIN ; QIN HAI ; OUYANG KEFENG ; FAN XIANG ; CHEN RUI ; CAO JIE</creatorcontrib><description>The invention discloses a power grid frequency situation prediction method based on transfer learning, which can adapt to frequency situation prediction requirements when a power grid operation mode and a topological structure are changed, and improves accuracy and reliability of a model. The method comprises the following steps: firstly, constructing a post-fault frequency situation prediction model based on a convolutional neural network (CNN), then obtaining enough samples for training by utilizing a transfer learning method, and correcting parameters of the CNN frequency situation prediction model, thereby obtaining a more accurate prediction model, and improving the precision of a system frequency prediction result. The precision of the frequency situation prediction model can be remarkably improved, the frequency change situation of the disturbed system can be predicted more accurately, corresponding control measures such as generator tripping, load shedding and direct-current emergency power control ar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210205&amp;DB=EPODOC&amp;CC=CN&amp;NR=112330488A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210205&amp;DB=EPODOC&amp;CC=CN&amp;NR=112330488A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG GUOSONG</creatorcontrib><creatorcontrib>YUAN XIAOQING</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>TANG JIANXING</creatorcontrib><creatorcontrib>YAO YAO</creatorcontrib><creatorcontrib>ZHU LINGZI</creatorcontrib><creatorcontrib>HE XIANQIANG</creatorcontrib><creatorcontrib>MA TANFENG</creatorcontrib><creatorcontrib>LIU MINGSHUN</creatorcontrib><creatorcontrib>WANG YIN</creatorcontrib><creatorcontrib>QIN HAI</creatorcontrib><creatorcontrib>OUYANG KEFENG</creatorcontrib><creatorcontrib>FAN XIANG</creatorcontrib><creatorcontrib>CHEN RUI</creatorcontrib><creatorcontrib>CAO JIE</creatorcontrib><title>Power grid frequency situation prediction method based on transfer learning</title><description>The invention discloses a power grid frequency situation prediction method based on transfer learning, which can adapt to frequency situation prediction requirements when a power grid operation mode and a topological structure are changed, and improves accuracy and reliability of a model. The method comprises the following steps: firstly, constructing a post-fault frequency situation prediction model based on a convolutional neural network (CNN), then obtaining enough samples for training by utilizing a transfer learning method, and correcting parameters of the CNN frequency situation prediction model, thereby obtaining a more accurate prediction model, and improving the precision of a system frequency prediction result. The precision of the frequency situation prediction model can be remarkably improved, the frequency change situation of the disturbed system can be predicted more accurately, corresponding control measures such as generator tripping, load shedding and direct-current emergency power control ar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOyC9PLVJIL8pMUUgrSi0sTc1LrlQoziwpTSzJzM9TKChKTclMBjNzU0sy8lMUkhKLU1MUgPySosS84jSg5pzUxKK8zLx0HgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhkbGxgYmHhaEyMGgCkqTX2</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>WANG GUOSONG</creator><creator>YUAN XIAOQING</creator><creator>ZHANG DAN</creator><creator>TANG JIANXING</creator><creator>YAO YAO</creator><creator>ZHU LINGZI</creator><creator>HE XIANQIANG</creator><creator>MA TANFENG</creator><creator>LIU MINGSHUN</creator><creator>WANG YIN</creator><creator>QIN HAI</creator><creator>OUYANG KEFENG</creator><creator>FAN XIANG</creator><creator>CHEN RUI</creator><creator>CAO JIE</creator><scope>EVB</scope></search><sort><creationdate>20210205</creationdate><title>Power grid frequency situation prediction method based on transfer learning</title><author>WANG GUOSONG ; YUAN XIAOQING ; ZHANG DAN ; TANG JIANXING ; YAO YAO ; ZHU LINGZI ; HE XIANQIANG ; MA TANFENG ; LIU MINGSHUN ; WANG YIN ; QIN HAI ; OUYANG KEFENG ; FAN XIANG ; CHEN RUI ; CAO JIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112330488A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG GUOSONG</creatorcontrib><creatorcontrib>YUAN XIAOQING</creatorcontrib><creatorcontrib>ZHANG DAN</creatorcontrib><creatorcontrib>TANG JIANXING</creatorcontrib><creatorcontrib>YAO YAO</creatorcontrib><creatorcontrib>ZHU LINGZI</creatorcontrib><creatorcontrib>HE XIANQIANG</creatorcontrib><creatorcontrib>MA TANFENG</creatorcontrib><creatorcontrib>LIU MINGSHUN</creatorcontrib><creatorcontrib>WANG YIN</creatorcontrib><creatorcontrib>QIN HAI</creatorcontrib><creatorcontrib>OUYANG KEFENG</creatorcontrib><creatorcontrib>FAN XIANG</creatorcontrib><creatorcontrib>CHEN RUI</creatorcontrib><creatorcontrib>CAO JIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG GUOSONG</au><au>YUAN XIAOQING</au><au>ZHANG DAN</au><au>TANG JIANXING</au><au>YAO YAO</au><au>ZHU LINGZI</au><au>HE XIANQIANG</au><au>MA TANFENG</au><au>LIU MINGSHUN</au><au>WANG YIN</au><au>QIN HAI</au><au>OUYANG KEFENG</au><au>FAN XIANG</au><au>CHEN RUI</au><au>CAO JIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid frequency situation prediction method based on transfer learning</title><date>2021-02-05</date><risdate>2021</risdate><abstract>The invention discloses a power grid frequency situation prediction method based on transfer learning, which can adapt to frequency situation prediction requirements when a power grid operation mode and a topological structure are changed, and improves accuracy and reliability of a model. The method comprises the following steps: firstly, constructing a post-fault frequency situation prediction model based on a convolutional neural network (CNN), then obtaining enough samples for training by utilizing a transfer learning method, and correcting parameters of the CNN frequency situation prediction model, thereby obtaining a more accurate prediction model, and improving the precision of a system frequency prediction result. The precision of the frequency situation prediction model can be remarkably improved, the frequency change situation of the disturbed system can be predicted more accurately, corresponding control measures such as generator tripping, load shedding and direct-current emergency power control ar</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112330488A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power grid frequency situation prediction method based on transfer learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20GUOSONG&rft.date=2021-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112330488A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true