BP neural network target detection method based on histogram statistics
The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram i...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CUI ZHAOJING SUN XIAOFAN LI ZONGLING LUAN SHENSHEN LI XIN CHENG BOWEN GUO HEHE WANG LUYUAN JIANG SHUAI PANG YALONG WU YUHANG HAO LIANG TIAN MIAOMIAO YU JIYANG NIU YUEHUA |
description | The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy.
本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112329788A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112329788A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112329788A3</originalsourceid><addsrcrecordid>eNrjZHB3ClDISy0tSswBUiXl-UXZCiWJRempJQopqSWpySWZ-XkKuaklGfkpCkmJxakpCkB-RmZxSX56UWKuQnFJYgmQk5lczMPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNTgebHO_sZGhoZG1maW1g4GhOjBgB4kTQ_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BP neural network target detection method based on histogram statistics</title><source>esp@cenet</source><creator>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</creator><creatorcontrib>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</creatorcontrib><description>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy.
本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210205&DB=EPODOC&CC=CN&NR=112329788A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210205&DB=EPODOC&CC=CN&NR=112329788A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUI ZHAOJING</creatorcontrib><creatorcontrib>SUN XIAOFAN</creatorcontrib><creatorcontrib>LI ZONGLING</creatorcontrib><creatorcontrib>LUAN SHENSHEN</creatorcontrib><creatorcontrib>LI XIN</creatorcontrib><creatorcontrib>CHENG BOWEN</creatorcontrib><creatorcontrib>GUO HEHE</creatorcontrib><creatorcontrib>WANG LUYUAN</creatorcontrib><creatorcontrib>JIANG SHUAI</creatorcontrib><creatorcontrib>PANG YALONG</creatorcontrib><creatorcontrib>WU YUHANG</creatorcontrib><creatorcontrib>HAO LIANG</creatorcontrib><creatorcontrib>TIAN MIAOMIAO</creatorcontrib><creatorcontrib>YU JIYANG</creatorcontrib><creatorcontrib>NIU YUEHUA</creatorcontrib><title>BP neural network target detection method based on histogram statistics</title><description>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy.
本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3ClDISy0tSswBUiXl-UXZCiWJRempJQopqSWpySWZ-XkKuaklGfkpCkmJxakpCkB-RmZxSX56UWKuQnFJYgmQk5lczMPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNTgebHO_sZGhoZG1maW1g4GhOjBgB4kTQ_</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>CUI ZHAOJING</creator><creator>SUN XIAOFAN</creator><creator>LI ZONGLING</creator><creator>LUAN SHENSHEN</creator><creator>LI XIN</creator><creator>CHENG BOWEN</creator><creator>GUO HEHE</creator><creator>WANG LUYUAN</creator><creator>JIANG SHUAI</creator><creator>PANG YALONG</creator><creator>WU YUHANG</creator><creator>HAO LIANG</creator><creator>TIAN MIAOMIAO</creator><creator>YU JIYANG</creator><creator>NIU YUEHUA</creator><scope>EVB</scope></search><sort><creationdate>20210205</creationdate><title>BP neural network target detection method based on histogram statistics</title><author>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112329788A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CUI ZHAOJING</creatorcontrib><creatorcontrib>SUN XIAOFAN</creatorcontrib><creatorcontrib>LI ZONGLING</creatorcontrib><creatorcontrib>LUAN SHENSHEN</creatorcontrib><creatorcontrib>LI XIN</creatorcontrib><creatorcontrib>CHENG BOWEN</creatorcontrib><creatorcontrib>GUO HEHE</creatorcontrib><creatorcontrib>WANG LUYUAN</creatorcontrib><creatorcontrib>JIANG SHUAI</creatorcontrib><creatorcontrib>PANG YALONG</creatorcontrib><creatorcontrib>WU YUHANG</creatorcontrib><creatorcontrib>HAO LIANG</creatorcontrib><creatorcontrib>TIAN MIAOMIAO</creatorcontrib><creatorcontrib>YU JIYANG</creatorcontrib><creatorcontrib>NIU YUEHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUI ZHAOJING</au><au>SUN XIAOFAN</au><au>LI ZONGLING</au><au>LUAN SHENSHEN</au><au>LI XIN</au><au>CHENG BOWEN</au><au>GUO HEHE</au><au>WANG LUYUAN</au><au>JIANG SHUAI</au><au>PANG YALONG</au><au>WU YUHANG</au><au>HAO LIANG</au><au>TIAN MIAOMIAO</au><au>YU JIYANG</au><au>NIU YUEHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BP neural network target detection method based on histogram statistics</title><date>2021-02-05</date><risdate>2021</risdate><abstract>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy.
本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112329788A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | BP neural network target detection method based on histogram statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUI%20ZHAOJING&rft.date=2021-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112329788A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |