BP neural network target detection method based on histogram statistics

The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CUI ZHAOJING, SUN XIAOFAN, LI ZONGLING, LUAN SHENSHEN, LI XIN, CHENG BOWEN, GUO HEHE, WANG LUYUAN, JIANG SHUAI, PANG YALONG, WU YUHANG, HAO LIANG, TIAN MIAOMIAO, YU JIYANG, NIU YUEHUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CUI ZHAOJING
SUN XIAOFAN
LI ZONGLING
LUAN SHENSHEN
LI XIN
CHENG BOWEN
GUO HEHE
WANG LUYUAN
JIANG SHUAI
PANG YALONG
WU YUHANG
HAO LIANG
TIAN MIAOMIAO
YU JIYANG
NIU YUEHUA
description The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy. 本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112329788A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112329788A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112329788A3</originalsourceid><addsrcrecordid>eNrjZHB3ClDISy0tSswBUiXl-UXZCiWJRempJQopqSWpySWZ-XkKuaklGfkpCkmJxakpCkB-RmZxSX56UWKuQnFJYgmQk5lczMPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNTgebHO_sZGhoZG1maW1g4GhOjBgB4kTQ_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BP neural network target detection method based on histogram statistics</title><source>esp@cenet</source><creator>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</creator><creatorcontrib>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</creatorcontrib><description>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy. 本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210205&amp;DB=EPODOC&amp;CC=CN&amp;NR=112329788A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210205&amp;DB=EPODOC&amp;CC=CN&amp;NR=112329788A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CUI ZHAOJING</creatorcontrib><creatorcontrib>SUN XIAOFAN</creatorcontrib><creatorcontrib>LI ZONGLING</creatorcontrib><creatorcontrib>LUAN SHENSHEN</creatorcontrib><creatorcontrib>LI XIN</creatorcontrib><creatorcontrib>CHENG BOWEN</creatorcontrib><creatorcontrib>GUO HEHE</creatorcontrib><creatorcontrib>WANG LUYUAN</creatorcontrib><creatorcontrib>JIANG SHUAI</creatorcontrib><creatorcontrib>PANG YALONG</creatorcontrib><creatorcontrib>WU YUHANG</creatorcontrib><creatorcontrib>HAO LIANG</creatorcontrib><creatorcontrib>TIAN MIAOMIAO</creatorcontrib><creatorcontrib>YU JIYANG</creatorcontrib><creatorcontrib>NIU YUEHUA</creatorcontrib><title>BP neural network target detection method based on histogram statistics</title><description>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy. 本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3ClDISy0tSswBUiXl-UXZCiWJRempJQopqSWpySWZ-XkKuaklGfkpCkmJxakpCkB-RmZxSX56UWKuQnFJYgmQk5lczMPAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNTgebHO_sZGhoZG1maW1g4GhOjBgB4kTQ_</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>CUI ZHAOJING</creator><creator>SUN XIAOFAN</creator><creator>LI ZONGLING</creator><creator>LUAN SHENSHEN</creator><creator>LI XIN</creator><creator>CHENG BOWEN</creator><creator>GUO HEHE</creator><creator>WANG LUYUAN</creator><creator>JIANG SHUAI</creator><creator>PANG YALONG</creator><creator>WU YUHANG</creator><creator>HAO LIANG</creator><creator>TIAN MIAOMIAO</creator><creator>YU JIYANG</creator><creator>NIU YUEHUA</creator><scope>EVB</scope></search><sort><creationdate>20210205</creationdate><title>BP neural network target detection method based on histogram statistics</title><author>CUI ZHAOJING ; SUN XIAOFAN ; LI ZONGLING ; LUAN SHENSHEN ; LI XIN ; CHENG BOWEN ; GUO HEHE ; WANG LUYUAN ; JIANG SHUAI ; PANG YALONG ; WU YUHANG ; HAO LIANG ; TIAN MIAOMIAO ; YU JIYANG ; NIU YUEHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112329788A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CUI ZHAOJING</creatorcontrib><creatorcontrib>SUN XIAOFAN</creatorcontrib><creatorcontrib>LI ZONGLING</creatorcontrib><creatorcontrib>LUAN SHENSHEN</creatorcontrib><creatorcontrib>LI XIN</creatorcontrib><creatorcontrib>CHENG BOWEN</creatorcontrib><creatorcontrib>GUO HEHE</creatorcontrib><creatorcontrib>WANG LUYUAN</creatorcontrib><creatorcontrib>JIANG SHUAI</creatorcontrib><creatorcontrib>PANG YALONG</creatorcontrib><creatorcontrib>WU YUHANG</creatorcontrib><creatorcontrib>HAO LIANG</creatorcontrib><creatorcontrib>TIAN MIAOMIAO</creatorcontrib><creatorcontrib>YU JIYANG</creatorcontrib><creatorcontrib>NIU YUEHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CUI ZHAOJING</au><au>SUN XIAOFAN</au><au>LI ZONGLING</au><au>LUAN SHENSHEN</au><au>LI XIN</au><au>CHENG BOWEN</au><au>GUO HEHE</au><au>WANG LUYUAN</au><au>JIANG SHUAI</au><au>PANG YALONG</au><au>WU YUHANG</au><au>HAO LIANG</au><au>TIAN MIAOMIAO</au><au>YU JIYANG</au><au>NIU YUEHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BP neural network target detection method based on histogram statistics</title><date>2021-02-05</date><risdate>2021</risdate><abstract>The invention provides a BP neural network target detection method based on histogram statistics, and the method comprises the steps: converting two-dimensional target slice information into one-dimensional histogram information, building a BP neural network model, and enabling the image histogram information to serve as the BP neural network input. The method has the advantages of being low in operation complexity, high in operation efficiency, simple in network model and capable of achieving rapid target detection and classification. Under the constraint of limited on-orbit resources of satellites, target detection and recognition work is completed on orbit quickly with low cost, high efficiency and high accuracy. 本发明提出一种基于直方图统计的BP神经网络目标检测方法,该算法将二维目标切片信息转换为一维直方图信息,通过建立BP神经网络模型,将图像直方图信息作为BP神经网络输入,算法具有运算复杂度低、运行效率高、网络模型简单、可实现快速目标检测分类的优点。在卫星有限的在轨资源约束下,低成本、高效率、高准确率、快速地在轨完成目标检测识别工作。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112329788A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title BP neural network target detection method based on histogram statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CUI%20ZHAOJING&rft.date=2021-02-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112329788A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true