Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model
The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gauss...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | NIE JINGMOU JIANG YIMING TANG YONGPENG MAO JIANXU ZHANG HUI ZHU QING ZHOU XIAN'EN WU ZIJIE WANG YAONAN |
description | The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112308961A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112308961A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112308961A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAwCiIlhL8qSzEPkx2R3ch2Qkzs-Dx3cIDWH28H8-8ej-4ZwPBKXoQ7rMaWBCi2seRkkZOOICQ46Qm2Vk5YCQL7KFHJQ-lQyRBcSG6Yq-YVSMWFT-WhWBkT8Oymr1wUFr9dlGtL-dne6tp4o50QkeJrGvvTbPdbQ7HfXPa_WO-NqdA0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><source>esp@cenet</source><creator>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</creator><creatorcontrib>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</creatorcontrib><description>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=CN&NR=112308961A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210202&DB=EPODOC&CC=CN&NR=112308961A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>JIANG YIMING</creatorcontrib><creatorcontrib>TANG YONGPENG</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>ZHANG HUI</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><description>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAwCiIlhL8qSzEPkx2R3ch2Qkzs-Dx3cIDWH28H8-8ej-4ZwPBKXoQ7rMaWBCi2seRkkZOOICQ46Qm2Vk5YCQL7KFHJQ-lQyRBcSG6Yq-YVSMWFT-WhWBkT8Oymr1wUFr9dlGtL-dne6tp4o50QkeJrGvvTbPdbQ7HfXPa_WO-NqdA0Q</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>NIE JINGMOU</creator><creator>JIANG YIMING</creator><creator>TANG YONGPENG</creator><creator>MAO JIANXU</creator><creator>ZHANG HUI</creator><creator>ZHU QING</creator><creator>ZHOU XIAN'EN</creator><creator>WU ZIJIE</creator><creator>WANG YAONAN</creator><scope>EVB</scope></search><sort><creationdate>20210202</creationdate><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><author>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112308961A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>JIANG YIMING</creatorcontrib><creatorcontrib>TANG YONGPENG</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>ZHANG HUI</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NIE JINGMOU</au><au>JIANG YIMING</au><au>TANG YONGPENG</au><au>MAO JIANXU</au><au>ZHANG HUI</au><au>ZHU QING</au><au>ZHOU XIAN'EN</au><au>WU ZIJIE</au><au>WANG YAONAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><date>2021-02-02</date><risdate>2021</risdate><abstract>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN112308961A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NIE%20JINGMOU&rft.date=2021-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112308961A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |