Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model

The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gauss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NIE JINGMOU, JIANG YIMING, TANG YONGPENG, MAO JIANXU, ZHANG HUI, ZHU QING, ZHOU XIAN'EN, WU ZIJIE, WANG YAONAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NIE JINGMOU
JIANG YIMING
TANG YONGPENG
MAO JIANXU
ZHANG HUI
ZHU QING
ZHOU XIAN'EN
WU ZIJIE
WANG YAONAN
description The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN112308961A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN112308961A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN112308961A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAwCiIlhL8qSzEPkx2R3ch2Qkzs-Dx3cIDWH28H8-8ej-4ZwPBKXoQ7rMaWBCi2seRkkZOOICQ46Qm2Vk5YCQL7KFHJQ-lQyRBcSG6Yq-YVSMWFT-WhWBkT8Oymr1wUFr9dlGtL-dne6tp4o50QkeJrGvvTbPdbQ7HfXPa_WO-NqdA0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><source>esp@cenet</source><creator>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</creator><creatorcontrib>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</creatorcontrib><description>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210202&amp;DB=EPODOC&amp;CC=CN&amp;NR=112308961A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210202&amp;DB=EPODOC&amp;CC=CN&amp;NR=112308961A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>JIANG YIMING</creatorcontrib><creatorcontrib>TANG YONGPENG</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>ZHANG HUI</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><description>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAwCiIlhL8qSzEPkx2R3ch2Qkzs-Dx3cIDWH28H8-8ej-4ZwPBKXoQ7rMaWBCi2seRkkZOOICQ46Qm2Vk5YCQL7KFHJQ-lQyRBcSG6Yq-YVSMWFT-WhWBkT8Oymr1wUFr9dlGtL-dne6tp4o50QkeJrGvvTbPdbQ7HfXPa_WO-NqdA0Q</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>NIE JINGMOU</creator><creator>JIANG YIMING</creator><creator>TANG YONGPENG</creator><creator>MAO JIANXU</creator><creator>ZHANG HUI</creator><creator>ZHU QING</creator><creator>ZHOU XIAN'EN</creator><creator>WU ZIJIE</creator><creator>WANG YAONAN</creator><scope>EVB</scope></search><sort><creationdate>20210202</creationdate><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><author>NIE JINGMOU ; JIANG YIMING ; TANG YONGPENG ; MAO JIANXU ; ZHANG HUI ; ZHU QING ; ZHOU XIAN'EN ; WU ZIJIE ; WANG YAONAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN112308961A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>NIE JINGMOU</creatorcontrib><creatorcontrib>JIANG YIMING</creatorcontrib><creatorcontrib>TANG YONGPENG</creatorcontrib><creatorcontrib>MAO JIANXU</creatorcontrib><creatorcontrib>ZHANG HUI</creatorcontrib><creatorcontrib>ZHU QING</creatorcontrib><creatorcontrib>ZHOU XIAN'EN</creatorcontrib><creatorcontrib>WU ZIJIE</creatorcontrib><creatorcontrib>WANG YAONAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NIE JINGMOU</au><au>JIANG YIMING</au><au>TANG YONGPENG</au><au>MAO JIANXU</au><au>ZHANG HUI</au><au>ZHU QING</au><au>ZHOU XIAN'EN</au><au>WU ZIJIE</au><au>WANG YAONAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model</title><date>2021-02-02</date><risdate>2021</risdate><abstract>The invention discloses a robot rapid robust three-dimensional reconstruction method based on a hierarchical Gaussian mixture model. The method comprises the following steps: enabling a robot to obtain point cloud data of a measurement object, enabling a GPU to accelerate to generate a layered Gaussian mixture model and a test set, constructing and updating a registration network, globally optimizing the registration network, updating the reconstructed Gaussian mixture model, and repeating the steps until the robot completes measurement at all measurement points; reconstructing a three-dimensional point cloud model of the measurement object, and analyzing and evaluating a reconstruction result. According to the method, a layered Gaussian mixture model is generated by accelerating point cloud data through GPU parallel computing, meanwhile, uncertainty of noise and measurement can be effectively processed, the speed and efficiency of three-dimensional reconstruction are improved, joint registration errors are r</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN112308961A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Robot rapid robust three-dimensional reconstruction method based on hierarchical Gaussian mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NIE%20JINGMOU&rft.date=2021-02-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN112308961A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true